
Research Ideas and Outcomes 4: e25485
doi: 10.3897/rio.4.e25485

Reviewable v1

R Package

Novel pedagogical tool for simultaneous learning of

plane geometry and R programming

Álvaro Briz-Redón , Ángel Serrano-Aroca
‡ Departament d’Estadística i Investigació Operativa, Facultat de Matemàtiques, Universitat de València, Valencia, Spain
§ Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain

Corresponding author: Ángel Serrano-Aroca (angel.serrano@ucv.es)

Received: 03 Apr 2018 | Published: 05 Apr 2018

Citation: Briz-Redón Á, Serrano-Aroca Á (2018) Novel pedagogical tool for simultaneous learning of plane
geometry and R programming. Research Ideas and Outcomes 4: e25485. https://doi.org/10.3897/rio.4.e25485

Abstract

Programming a computer is an activity that can be very beneficial to undergraduate
students in terms of improving their mental capabilities, collaborative attitudes and levels of
engagement in learning. Despite the initial difficulties that typically arise when learning to
program, there are several well-known strategies to overcome them, providing a very high
benefit-cost ratio to most of the students. Moreover, the use of a programming language
usually raises the interest of students to learn any specific concept, which has caused that
many teachers around the world employ a programming language as a learning
environment to treat almost every possible topic. Particularly, mathematics can be taught
and learnt while using a suitable programming language. The R programming language is
endowed with a wide range of capabilities that allow its use to learn different kind of
concepts while programming. Therefore, complex subjects such as mathematics could be
learnt with the help of this powerful programming language. In addition, since the R
language provides numerous graphical functions, it could be very useful to acquire
simultaneously basic plane geometry and programming knowledge at the undergraduate
level. This paper describes the LearnGeom R package, a novel pedagogical tool, which
contains multiple functions to learn geometry in R at different levels of difficulty, from the
most basic geometric objects to high-complexity geometric constructions, while developing
numerous programming skills.

‡ §

© Briz-Redón Á, Serrano-Aroca Á. This is an open access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

https://doi.org/10.3897/rio.4.e25485
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.4.e25485&domain=pdf&date_stamp=2018-4-5
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.4.e25485&domain=pdf&date_stamp=2018-4-5
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.4.e25485&domain=pdf&date_stamp=2018-4-5
mailto:angel.serrano@ucv.es
https://doi.org/10.3897/rio.4.e25485

Keywords

Mathematics Education; Geometry Education; Computational Thinking; Programming
Language; R package

Introduction

In the field of informatics, programming is the activity that basically consists of translating
from human language to the language understood by a computer McCracken (1957).

In addition to its inherent importance in the computational sciences, learning to program
provides powerful strategies for thinking, designing and solving problems Booth (1958),
Howe et al. (1981), Soloway (1993). In fact, these authors describe a two-phase process,
consisting of finding the problem solution and then rewriting this solution in an alternative
and precise language that can be understood by the computer.

The nature of programming provides certain advantages to the user that very few mental
activities can offer. For example, it allows the programmer to explore thinking processes,
improve logical reasoning and increase capacity to correct mistakes Papert (1980).
Moreover, the practice of programming is highly correlated with the development of a good
linguistic capacity and, consequently, with a better academic performance Lehrer and
DeBernard (1987), Palumbo (1990).

There are multiple studies that have confirmed the benefits of programming on young
students. For example, already in the early 1970s, it was concluded in a survey conducted
by Feurzeig et al. 2011 that the use of LOGO programming language could enhance the
reading ability of some students, as well as increasing the interest in learning and the level
of self-confidence of many of them.

At the same time, there is little disagreement about the declaration of programming as a
complex activity Govender (2009). More precisely, Du Boulay (1986) identified five kinds of
difficulties: lack of orientation, ignorance about the machine being employed (usually a
computer), inadaptation to the language, problems of comprehension and absence of
method. Although these five frequent difficulties are interconnected, students specially tend
to have problems with the programming language itself. Language's syntax, that is, the
collection of words and symbols that allow a human to communicate with a machine, can
be excessively rigid to a novel user of a programming language. In connection with the
syntax, the meaning of each of its elements forces the students to carry out processes of
abstraction and reasoning that they are not always able to assume, deriving sometimes in
misconceptions and wrong analogies Spohrer et al. (1985). Furthermore, it is really difficult
to teach students to systematize their programming practices in order to be more efficient
and make less mistakes. In this regard, the common stages recommended when
programming could be summarized as follows: problem approach, language development,
testing and correction/improvement.

2 Briz-Redón Á, Serrano-Aroca Á

In view of all these difficulties, what strategies should be followed for the correct teaching of
programming? While being aware that each student learns in a different way, there are
some accepted strategies in order to reduce, at least to a certain extent, the difficulties that
arise when programming. In the first place, the choice of the programming language is key.
The basic operating rules and the rigid syntax are common to all programming languages,
but not all of them are equally accessible, especially from the point of view of a totally
inexperienced user. The wide variety of languages available today, the majority of which
are free software, render this task much easier.

Once the language has been conveniently chosen, different strategies can be carried out.
Some methodological examples of successful programming teaching approaches include:
simplifying and dividing problems into simpler sub-problems, defining and explaining a
model based on the machine-language environment in which the student is working Statz
and Miller (1978), slightly modifying sets of instructions to solve similar problems Linn and
Dalbey (1985), or constantly addressing applied problems.

Learning through the use of a programming language can result more interesting and
exciting for a student, and explains somehow why it has been used to teach and study
mathematics during the last decades, with overall successful results, as described by
Wang et al. (2015). In addition, the use of programming as a learning vehicle favours
collaboration between students and the development of competencies related to
autonomous learning Falloon (2016).

Currently, there are already some languages and programs focused on mathematics
learning and teaching at undergraduate level, being Scratch Resnick et al. (2009) and
GeoGebra Hohenwarter (2002) two of the most important by far.

Scratch possesses most of the common features that are associated to a programming
language. However, its style is predominantly graphical, which differs to the vast majority of
programming languages. This graphical orientation clearly reduces the initial difficulty of
learning to program, but also avoids the development of some other programming skills
usually acquired in the classical educational way.

The ScratchMaths project Benton et al. (2016) was developed in four schools located in
London with students aged 9 to 11 years to learn mathematics through Scratch
programming on four basic objectives: to explore, explain, predict and share. This project is
still in progress and has recently shown that the correct design and sequencing of activities
around a mathematical concept, together with the continuous help of specialized teachers,
allows students to learn with interest and in a meaningful way Benton et al. (2018).

In addition, researchers such as Foerster (2016) and Akpinar and Aslan (2015) proved that
the application of the Scratch language to teaching mathematics can be very successful.
Thus, Foerster (2016) applied this Scratch programming methodology in a class of about
11-year-old students while developing mathematical concepts related to polygon
congruence and tessellation construction. The results of this study showed that the
learning process run very smoothly and pleasantly for the students, and after about two

Novel pedagogical tool for simultaneous learning of plane geometry and ... 3

years, the students achieved an excellent knowledge of geometry in comparison with the
other students who did not follow this pedagogical methodology. These results clearly
demonstrate the possible long-term positive effects that this learning methodology can
produce. In the same line of research, Akpinar and Aslan (2015) applied Scratch language
to create a learning environment that allowed the study of probability. Although Scratch
does not have specific elements for dealing with probabilistic concepts, the implementation
of experimental and simulated situations was really helpful to improve students' proficiency
in this branch of mathematics. The tests carried out before and after the sessions showed
that the students significantly increased their knowledge of probability. At the same time,
the sessions allowed students to exploit their creative facets by designing multiple games
associated with random experiments.

On the other hand, GeoGebra is dynamic mathematics software, which brings together
geometry, algebra, spreadsheets, graphing, statistics and calculus in one easy-to-use
package. Several works confirm the advantages of using GeoGebra at undergraduate
level. Zengin et al. (2012) designed an assisted instruction of trigonometry with GeoGebra
that resulted more effective than the classical approach, based on constructionist theory. In
the same way, Priatna (2017) showed that students being taught with the aid of GeoGebra
significantly outperformed students subject to classical education in terms of mathematical
representation ability. Other researchers such as Akkaya et al. (2011) proposed the
learning of symmetry with GeoGebra, facilitating students to visualize, generalize and
share with their classmates, producing an active and collaborative learning environment.
Very recently, Masri et al. (2017) tested GeoGebra with some degree of success with a
group of Malaysian students, whose mathematical level was later compared to students of
the same year that had followed traditional teaching techniques. Despite there were not
found significant differences between the two groups of students regarding the
mathematical level acquired, students that were taught with GeoGebra clearly appreciated
the use of this program during the development of the lessons. Finally, a very interesting
finding was achieved by Saha et al. (2010). The use of GeoGebra to teach plane geometry
did not appear as significantly better for students already possessing a high visual-spatial
ability, when compared to students being taught without the help of the program. However,
these differences were clearly revealed when considering students with a low visual-spatial
ability, confirming the positive effects of using this software.

Another programming language, which is currently very popular is R Team (2018). This
language, even though it has always been conceived as an environment for performing
statistical analysis, is also endowed with a wide range of capabilities that allow its use to
learn different kind of concepts while programming. Therefore, complex subjects such as
mathematics could be learnt with the help of this powerful programming language.

For example, Pruim et al. (2017) have recently developed the Mosaic project, which
integrates a set of functions to facilitate the introduction of basic statistics and data science
concepts such as visualization, modelling and simulation. Other authors such as Mascaró
et al. (2014) and Mascaró et al. (2016) have shown how beneficial can be for a university
student to be taught statistics with the aid of the R language, in terms of understanding and
engagement to the subject matter.

4 Briz-Redón Á, Serrano-Aroca Á

In addition, since the R language provides numerous graphical functions, it can be very
useful to simultaneously acquire basic plane geometry and R programming knowledge at
the undergraduate level.

Therefore, in this work we present a novel pedagogical tool to simultaneously learn plane
geometry and programming based on R, which we have denominated LearnGeom. This
tool is available for secondary school teachers, which may be interested in teaching plane
geometry and R programming skills at the same time, and may desire to complement the
use of other languages and software with this R package. It can be downloaded once the R
programming language is installed in your computer (https://www.r-project.org) and after
typing install.packages(LearnGeom) in the program console to install the developed
LearnGeom R package. The LearnGeom R-package can also be found as a github
repository in Briz-Redón and Serrano-Aroca (2018).

Basic functions of the package

The LearnGeom R package provides basic functions to treat plane geometry. Therefore,
the user is expected to work on a coordinate plane in order to manipulate different
geometric objects and constructions. Thus, the function CoordinatePlane allows the user to
plot an empty coordinate plane with customizable limits for the X and Y axis. For example,
CoordinatePlane(-5, 5, -5, 5) can be typed to set a coordinate plane in the range [-5,5] x
[-5,5], which is the one used for most of the examples included in the paper. Once a
coordinate plane is started, different geometric objects can be created and plotted on it.
The basic geometric objects that can be utilised in this version of the package are five:
points, segments, arcs, lines and polygons.

All of them can be plotted in the coordinate plane with function Draw, and the appropriate
use of the methods that R offers can lead to different mathematical concepts and many
kind of geometric problems. A point can be created by simply defining a two-dimensional
vector in R, e.g., P = c(0,0) for the usual origin of coordinates. This definition is also used
for the creation of a geometric vector to determine a direction in the plane. The coincidence
of both definitions also exists if classical mathematical notations are followed. Therefore, it
should not be a source of confusion for the user.

The first method to define a segment in the plane, which is the most basic one, consists of
the choice of two points of the plane, P and Q, and applying the shortest path (in euclidean
distance) to connect them. There is another common method to define a segment in the
plane: from a starting point, choosing an angle and a length for the segment. Both
possibilities can be achieved with the CreateSegmentPoints and CreateSegmentAngle
functions of the package. A line, as a segment, can be defined from two points, or from a
point and an angle. Moreover, there is a standard combination of parameters to
characterize every line in the plane: the slope and the intercept. For this reason,
CreateLinePoints and CreateLineAngle functions return a two-dimensional vector that
contains the slope and intercept of the line, regardless of the way it is defined. The use of
the pair slope-intercept has a problem with vertical lines, which are parallel to Y axis. In the

Novel pedagogical tool for simultaneous learning of plane geometry and ... 5

https://www.r-project.org

case that the user defines a line of this kind, with any of the two available functions, the
returning object will be a string two-dimensional vector. It will include the word "Inf" for the
first position (infinite slope) and the constant X-value for the line in the second (as a
character).

Function Parameters Geometric object

CreateArcAngles C, r, angle1, angle2, direction Arc

CreateArcPointsDist P1, P2, r, choice, direction

CreateLineAngle P, angle Line

CreateLinePoints P1, P2

CreatePolygon List of points Polygon

CreateRegularPolygon n, C, l

CreateSegmentAngle P, angle, l Segment

CreateSegmentPoints P1, P2

An arc is simply a part of a circumference, or even the circumference itself. The
CreateArcAngle function allows the user to make an arc from a circumference with four
parameters to choose: the center of the circumference, the radius of the circumference and
the two angles, from 0 to 360 degrees that determine the part of the circumference to be
plotted. Another possibility to create an arc in the plane consists of connecting two points.
The CreateArcPointsDist function allows the user to connect any two given points in the
plane by an arc. Of course, there are many (infinite) arcs that pass through every two
points in a plane. The parameter radius fixes a radius for the arc to be built. If the selected
radius is smaller than half the distance between the points, the problem has no solution
and no arc is produced (a message is shown on the screen to inform the user).

Polygons are closed figures made of a finite number of points (there must be 3 points at
least). The segments that join the points of a polygon are called the sides of the polygon,
and each of the sides must intersect only at the two points that connects (auto-
intersections are not allowed in a polygon). It is usual to represent a polygon by an ordered
list of points, which indicates the way the points are connected. For example, if a polygon is
represented by a list of points [P1, P2,P3], it means that the three segments of this polygon
(a triangle) join P1 with P2, P2 with P3 and P3 with P1. The CreatePolygon function admits
any finite number of points to produce a polygon, which corresponds to the definition of a
polygon as a list of points. It is important to introduce the points in a certain order to get the
desired output because the same combination of points can lead to different figures. In

Table 1.

The basic functions available in the LearnGeom R package to create geometric objects and the
parameters that must be used to precisely define these objects. The third column refers to the
geometric object that is created by each of the functions, which is also the class that the functions
assign to their outputs.

6 Briz-Redón Á, Serrano-Aroca Á

order to make a polygon without self-intersections, the points must be passed to the
function following a clockwise (or counterclockwise) direction. Moreover, this function
includes a procedure to detect collinearity between the points, which makes the function to
show the message "Some of the inserted points are collinear. This could lead to a defective
polygon" when this occurs. If the user is interested in building a regular polygon given its
center, number of sides and side length, the CreateRegularPolygon function can do it.

Function Parameters description

CreateArcAngles C - Center for the circumference which generates the arc

r - Radius for the circumference which generates the arc

angle1 - Angle (0-360) from which the arc starts

angle2 - Angle (0-360) at which the arc arrives

direction - Clockwise or anti-clockwise direction to properly define the arc

CreateArcPointsDist P1 - Point 1 to be joined by an arc to point 2

P2 - Point 2 to be joined by an arc to point 1

r - Radius for the arc being built

choice - Integer which allows the user to choose every arc from two possibilities

direction - Clockwise or anti-clockwise direction to properly define the arc

CreateLineAngle P - Point through which the line passes

angle - Angle (0-360) that the line must form with X-axis

CreateLinePoints P1 - Point 1 to be joined by a line to point 2

P2 - Point 2 to be joined by a line to point 1

CreatePolygon ... - Ordered list of points to build the polygon

CreateRegularPolygon n - Number of sides for the polygon

C - Center for regular polygon

l - Side length for the polygon

CreateSegmentAngle P - Starting point for the segment being built

angle - Angle (0-360) that the segment must form with X-axis

l - Length for the segment

CreateSegmentPoints P1 - Point 1 to be joined by a segment to point 2

P2 - Point 2 to be joined by a segment to point 1

Table 2.

Short description of all the parameters available in the basic functions of the LearnGeom R
package.

Novel pedagogical tool for simultaneous learning of plane geometry and ... 7

It is quite simple to make these objects with basic graphical R functions. However, the goal
was to create a homogeneous group of functions with a minimal number of parameters.
Although the already existing functions in the R language are simple for a programmer,
they may contain too many parameters for a novice user. Moreover, it is essential to define
the functions with a little number of parameters in order to highlight the different existing
methods to define the same geometric object.

Finally, the Draw function is programmed to be able to accept all kind of geometric objects
as a parameter. This fact seems to be essential to understand geometric ideas because of
providing the user a quick and intuitive tool to easily visualize while programming. The only
visible difference among the different geometric objects and Draw function occurs with
polygons. This function adds, only for polygons, the option of using two colours and the
possibility of inserting labels at each of the points of the object.

Geometric object Data type Object fields

Arc Vector X – X-coordinate for the center of the arc

Y – Y-coordinate for the center of the arc

r – radius of the arc

angle1 – Angle (0º-360º) from which the arc starts

angle2 – Angle (0º-360º) at which the arc arrives

dir – 1 for anti-clockwise direction, 2 for clockwise

Line Vector slope – Slope of the line

intercept – Intercept (Y-axis cut) of the line

Polygon Matrix X – X-coordinates for the points that are part of the polygon

Y – Y-coordinates for the points that are part of the polygon

Segment Matrix X – X-coordinates for the two points that form the segment

Y – Y-coordinates for the two points that form the segment

As a summary, Table 1 describes the eight basic functions included in the package to
create geometric objects.

A brief explanation of the parameters which are associated to each of these functions can
be found in Table 2.

Table 3.

Information contained in each of the possible objects that are produced by the basic functions. As it
is shown in the table, the outputs of these functions are basically a vector or a matrix which contain
the points that make the geometric object or the parameters that define the object unambiguously.

8 Briz-Redón Á, Serrano-Aroca Á

Table 3 clarifies the structure of the outputs produced by each of the functions and the
information which they provide about the geometric object that they represent.

a b

c d

e f

Figure 1.

Several examples of use of some of the basic functions included in the LearnGeom R package
with their required lines of code to produce them.
a: Three polygons created with the CreatePolygon function.
b: Regular polygons with 9 or less sides created with CreateRegularPolygon.
c: Example of use of the RemovePointPoly function. A point is removed from a regular
pentagon.
d: Example of use of the AddPointPoly function. A point is added to a regular pentagon.
e: Examples of use of the CreateArcAngles function. The red arc follows the anti-clockwise
direction; the blue one the clockwise direction.
f: Examples of use of the CreateArcPointsDist function. The combination of the parameters
direction and choice allows the creation of four different arcs

Novel pedagogical tool for simultaneous learning of plane geometry and ... 9

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299907
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299907
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299908
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299908
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299909
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299909
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299910
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299910
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299911
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299911
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299912
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4299912
https://doi.org/10.3897/rio.4.e25485.figure1a
https://doi.org/10.3897/rio.4.e25485.figure1a
https://doi.org/10.3897/rio.4.e25485.figure1a
https://doi.org/10.3897/rio.4.e25485.figure1b
https://doi.org/10.3897/rio.4.e25485.figure1b
https://doi.org/10.3897/rio.4.e25485.figure1b
https://doi.org/10.3897/rio.4.e25485.figure1c
https://doi.org/10.3897/rio.4.e25485.figure1c
https://doi.org/10.3897/rio.4.e25485.figure1c
https://doi.org/10.3897/rio.4.e25485.figure1d
https://doi.org/10.3897/rio.4.e25485.figure1d
https://doi.org/10.3897/rio.4.e25485.figure1d
https://doi.org/10.3897/rio.4.e25485.figure1e
https://doi.org/10.3897/rio.4.e25485.figure1e
https://doi.org/10.3897/rio.4.e25485.figure1e
https://doi.org/10.3897/rio.4.e25485.figure1f
https://doi.org/10.3897/rio.4.e25485.figure1f
https://doi.org/10.3897/rio.4.e25485.figure1f

Fig. 1 contains examples of use of several functions of the LearnGeom R package,
including some of the R instructions needed to use them and their graphical outputs. Fig.
1a shows three polygons of 3, 4 and 5 sides that can be freely defined with the
CreatePolygon function. Fig. 1b includes the first nine regular polygons as can created by
the function CreateRegularPolygon with lengthside l = 1 and varying center. Fig. 1c, d also
contains examples of removing and adding points with the RemovePointPoly and
AddPointPoly functions, along with the lines of code required to obtain these polygons after
a regular pentagon (Penta) is defined. Fig. 1e, f show examples of use of the
CreateArcAngles and CreateArcPointsDist functions, which attempt to clarify the use of
each oftheir parameters.

a b

c d

Figure 2.

Examples of use of the specific functions for lines and segments creation. The coincidence in
the outputs is due to the choice of equivalent parameters, which are visible in their
corresponding figures.
a: Example of use of CreateSegmentAngle.
b: Example of use of CreateSegmentPoints.
c: Example of use of CreateLineAngle.
d: Example of use of CreateLinePoints.

10 Briz-Redón Á, Serrano-Aroca Á

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300011
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300011
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300012
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300012
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300013
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300013
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300014
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300014
https://doi.org/10.3897/rio.4.e25485.figure2a
https://doi.org/10.3897/rio.4.e25485.figure2a
https://doi.org/10.3897/rio.4.e25485.figure2a
https://doi.org/10.3897/rio.4.e25485.figure2b
https://doi.org/10.3897/rio.4.e25485.figure2b
https://doi.org/10.3897/rio.4.e25485.figure2b
https://doi.org/10.3897/rio.4.e25485.figure2c
https://doi.org/10.3897/rio.4.e25485.figure2c
https://doi.org/10.3897/rio.4.e25485.figure2c
https://doi.org/10.3897/rio.4.e25485.figure2d
https://doi.org/10.3897/rio.4.e25485.figure2d
https://doi.org/10.3897/rio.4.e25485.figure2d

Fig. 2 contains a couple of examples of use of the specific functions available for creating
lines and segments, including the required R code. This figure shows that both lines and
segments are the same because the introduced parameters are equivalent. Depending on
the situation and the available information, users may find one or the other one as the most
suitable tool.

Moreover, if a more experienced user of the language aims to create a line by specifying its
slope and intercept, even though there is no function in the package to perform this, it can
be achieved by simply defining a two-dimensional vector containing these basic
parameters of the line and appending the class Line to it. This also applies to the other
three geometric objects. However, this is not the use of the package we would expect for a
new user of it. The rest of this paper contains multiple examples of use of some functions
of the package that have not been mentioned yet and several applications which are
possible to perform by combining classical geometric problems, different programming
techniques and all the functions included in the package. These applications are thus
classified into three categories according to their level of difficulty: basic, intermediate and
advanced.

Basic level

Affine transformations

Affine functions are geometric transformations that preserve collinearity and ratios of
distances. LearnGeom contains functions to apply six different affine transformations:
homothety, reflection, rotation, shear, similarity and translation. Each of these
transformations is associated with a 2 x 2 matrix, depending on one or several specific
parameters.

All of these functions apply to polygons. However, they also can be used with lines and
segments in the case of rotation and translation. For this reason, the names for the
functions related to these transformation miss the word Polygon.

The use of the affine transformations functions included in the package can be seen in Fig.
3. The lines of code that a user needs to type to produce the outputs included in this figure
are also provided. The prior setting of a coordinate plane and the creation and drawing of a
triangle (the blue one in Fig. 3) is needed but omitted for greater clarity. Once a triangle has
been created, each of the transformations can be applied to it, and both the original triangle
and the transformed one can be plotted in the same coordinate plane (in blue and orange,
respectively, in Fig. 3).

Reflection

A reflection needs the definition of a line to be used as the axis of reflection, which can be
built by the CreateLinePoints or CreateLineAngle functions (Fig. 3a).

Novel pedagogical tool for simultaneous learning of plane geometry and ... 11

a b

c d

e f

Figure 3.

Examples of use of the functions included in the package that represent affine transformations
in the plane. In all the pictures, the blue triangle, placed at the points A(0,0), B(2,0) and C(1,1),
is the one passed to each of the functions, being the orange triangle the output resulting for
each of the transformations.
a: A reflection.
b: A rotation.
c: A similarity.
d: A translation.
e: A shear transformation.
f: A homothety.

12 Briz-Redón Á, Serrano-Aroca Á

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300087
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300087
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300088
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300088
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300089
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300089
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300090
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300090
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300091
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300091
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300092
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300092
https://doi.org/10.3897/rio.4.e25485.figure3a
https://doi.org/10.3897/rio.4.e25485.figure3a
https://doi.org/10.3897/rio.4.e25485.figure3a
https://doi.org/10.3897/rio.4.e25485.figure3b
https://doi.org/10.3897/rio.4.e25485.figure3b
https://doi.org/10.3897/rio.4.e25485.figure3b
https://doi.org/10.3897/rio.4.e25485.figure3c
https://doi.org/10.3897/rio.4.e25485.figure3c
https://doi.org/10.3897/rio.4.e25485.figure3c
https://doi.org/10.3897/rio.4.e25485.figure3d
https://doi.org/10.3897/rio.4.e25485.figure3d
https://doi.org/10.3897/rio.4.e25485.figure3d
https://doi.org/10.3897/rio.4.e25485.figure3e
https://doi.org/10.3897/rio.4.e25485.figure3e
https://doi.org/10.3897/rio.4.e25485.figure3e
https://doi.org/10.3897/rio.4.e25485.figure3f
https://doi.org/10.3897/rio.4.e25485.figure3f
https://doi.org/10.3897/rio.4.e25485.figure3f

Rotation

The most familiar parameter related to this transformation is the angle of rotation, which is
defined as 30º this time. However, this angle does not fully characterise this transformation
because it is also necessary the only point remaining fixed after the transformation (for this
example, point (2,0) of the triangle) (Fig. 3b).

Similarity

A similarity only needs the selection of one parameter, k, in the SimilarPolygon package
function. This parameter allows the user to create a polygon similar to the original one,
which can be a contraction (k < 1) or an expansion (k > 1), altering the size of the polygon
without changing its shape (Fig. 3c).

Translation

Translation simply represents the movement of a polygon in the direction of vector v,
conserving the angles and lengths of the initial polygon (Fig. 3d).

Shear and Homothety

Shear and homothety are the remaining affine transformations available in the package.
Even though they are less common and known than the other four, they offer many
possibilities to the user.

ShearedPolygon shares parameter k with SimilarPolygon, as both transformations enable a
change in the size of the polygon. However, the transformation produced by
ShearedPolygon does not conserve the shape of the object. The direction parameter has
two possible values, horizontal and vertical, which allow the deformation of the initial
polygon in the two directions of the plane (Fig. 3e).

On the other hand, the function Homothety can also produce an enlargement or reduction
of a polygon in relation to a point of the plane called the center of the homothety. The
function contains an option to display all the lines that connect the points of the original and
the transformed polygons passing through the center (Fig. 3f).

Points of the triangle

We can appreciate a combined use of the package fuctions and the R language
capabilities by obtaining a notable point of a triangle: its circumcenter, that is, the
intersection of its three perpendicular bisector lines.

Novel pedagogical tool for simultaneous learning of plane geometry and ... 13

Building a triangle and its middle points

For example, consider the triangle of points (0,0), (1,1) and (2,0). The CreatePolygon
function is used for this step. Letters A, B and C are used to represent the three points of
the triangle. It is also convenient to calculate and visualize the middle points of the triangle
sides. The MidPoint function of this package can perform this task (see Fig. 4a).

Orthogonal vectors and auxiliary points

In order to find the bisectors of the sides, it is necessary to find an orthogonal vector to
each of them. Prior to that, the vectors that connect the three points have to be computed
(defined as the difference between the points). Now, one alternative to find the orthogonal
of each of these vectors consists of changing the order of the coordinates and the sign of
one of them, as it is shown in the code in Fig. 4a. Following the orthogonal direction, and
starting from each of the middle points, three auxiliary new points are found (see Fig. 4a).

Lines creation and intersection

The auxiliary points previously obtained are then connected to the middle points of the
sides of the triangle through a line (see Figure Fig. 4b).

As it can be observed in these blocks of code, several functions of the package reduce the
difficulty of some of the steps, allowing the user to focus on the most advanced topics

a b

Figure 4.

Partial results during the process of finding the circumcenter of the triangle of points (-1,0),
(0,1) and (1,0).
a: Triangle creation and obtention of the middle points of the sides and three auxiliary points in
the orthogonal direction of each of the sides.
b: Bisector lines and intersection in the circumcenter of the triangle.

14 Briz-Redón Á, Serrano-Aroca Á

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300200
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300200
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300201
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300201
https://doi.org/10.3897/rio.4.e25485.figure4a
https://doi.org/10.3897/rio.4.e25485.figure4a
https://doi.org/10.3897/rio.4.e25485.figure4a
https://doi.org/10.3897/rio.4.e25485.figure4b
https://doi.org/10.3897/rio.4.e25485.figure4b
https://doi.org/10.3897/rio.4.e25485.figure4b

involved in the resolution of the problem, such as orthogonality and operations on points
and vectors.

Intermediate level

Tessellations

A tessellation, also known as a tiling, is a pattern that is made by repeating a basic
geometric figure, or combination of figures, along a plane Grunbaum and Shephard (1977).
Tessellations appear sometimes in nature and are often present in architectural
constructions Lu and Steinhardt (2007). For example, beehives, the perfect structures
created by bees to produce their honey, can be considered as a tessellation made of
regular hexagons. Therefore, with the help of the function Tessellation, a user with some
experience using this package could be able to generate a pattern that reminds a beehive.
Besides, the user could divide the problem into two parts: setting an initial regular hexagon
in the plane finding two other hexagons that are contiguous to it and a second part
consisting of allowing the extension of the pattern to a wider region of the plane by the
appropriate use of the Tessellation function.

Setting an initial hexagon

The process starts with the creation of a regular hexagon in the plane (see Fig. 5a).

Contiguous hexagons

In order to obtain two hexagons that are contiguous to the initial one, Hexa0 can be
translated in the direction determined by its center and the middle point of the segment that
joins points 1 and 6 (for Hexa1) and the one that joins 2 and 3 (for Hexa2) (see Fig. 5b).

Creating tessellations

The final step requires the use of the Tessellation function with the right separation
parameter (see Fig. 5c). The use of the MidPoint function and visualization are essential for
this task. Moreover, it should be noted that the hexagons are passed to the Tessellation
function as a list. In general, this fact allows to apply simultaneously the tessellation
function to a set of several polygons. In order to achieve the desired pattern, it is very
important to set correctly the separation parameter of the function. Otherwise, the resulting
pattern could contain some overlaps, which are uncommon in the creation of tessellations.
Moreover, one could minimize the code to get the Hexa1 and Hexa2 hexagons by using the
ReflectedPolygon function. It is clearly noticeable that these two hexagons must be
symmetric to Hexa0 about the two lines that connect point 1 with 6, and 2 with 3. The
optimized code and its output is included in Fig. 5d. The two options to create Hexa1 and
Hexa2 seem enough to show that the use of this learning approach could be beneficial to

Novel pedagogical tool for simultaneous learning of plane geometry and ... 15

improve, simultaneously, geometric thinking and programming skills.As another possible
application, Tessellation could allow the user to attempt a classical mathematical problem:
to complete a plane region by tiling polygons Schattschneider (1981). Some functions of
the package such as RotatedPolygon or TranslatedPolygon would be necessary for this
matter.

a b

c d

Figure 5.

Different stages of the creation of a beehive structure with the aid of tessellations.
a: Creating a regular hexagon that works as the start of the tessellation.
b: Creating two contiguous hexagons to the starting one. These hexagons are derived from
the middle points of some of the sides of the initial hexagon.
c: Once the contiguous hexagons are obtained, function Tessellation allows the creation of the
structure.
d: Alternative to step in b, which minimizes the R code required to obtain the output. This
strategy is based on the property of reflection.

16 Briz-Redón Á, Serrano-Aroca Á

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300276
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300276
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300277
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300277
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300278
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300278
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300279
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300279
https://doi.org/10.3897/rio.4.e25485.figure5a
https://doi.org/10.3897/rio.4.e25485.figure5a
https://doi.org/10.3897/rio.4.e25485.figure5a
https://doi.org/10.3897/rio.4.e25485.figure5b
https://doi.org/10.3897/rio.4.e25485.figure5b
https://doi.org/10.3897/rio.4.e25485.figure5b
https://doi.org/10.3897/rio.4.e25485.figure5c
https://doi.org/10.3897/rio.4.e25485.figure5c
https://doi.org/10.3897/rio.4.e25485.figure5c
https://doi.org/10.3897/rio.4.e25485.figure5d
https://doi.org/10.3897/rio.4.e25485.figure5d
https://doi.org/10.3897/rio.4.e25485.figure5d

Working on the real world

The GetMap function of the RgoogleMaps package gives users the possibility to treat
geometric objects over a plane that represents a piece of the world we live in. The zoom
parameter ranges from 0 to 21, depending on the location, allowing the user to visualize
big pictures of the world but also little details of some buildings.

The function CoordinateImage of this package works as CoordinatePlane. However, in this
case, it is capable of setting the axis and the grid over an image obtained from Google
Maps. As an illustration, the approximation of the British coast with a polygon can be
performed, which is a problem that is connected to the posterior definition of fractal
Mandelbrot (1967). The last lines of this section contain an R code (in italics) for achieving
this task, in which a polygon of 30 points is created with the aid of the SelectPoints function
of the package. The first argument of the GetMap function is a vector containing the
latitude and longitude, in degrees, which are chosen as the center of the picture. Latitude
and longitude can range from -90º to 90º and from -180º to 180º respectively as usual. A
zoom of 5 is selected for being able to visualize the complete British coast.

> library(RgoogleMaps)

> ima <- GetMap(c(53.404059,-3.351493), zoom = 5, maptype = "satellite")

> ima <- ima[[4]]

> CoordinateImage(-10, 10, -10, 10, ima)

> S <- SelectPoints(30)

> Draw(S, c("transparent","white"))

Advanced level

Recursive programming

Recursive programming is one of the most efficient strategies to find the solution of some
problems. However, it is also a difficult task for novice programmers. For quite advanced
students, recursive programming could be treated to build a well-known mathematical
structure: a fractal Mandelbrot (1977). Fractals are geometric objects which satisfy the
property of self-similarity, which basically means that each of their parts satisfy the same
properties and internal relationships as the complete object does.

As an illustration, this definition can be easily imagined with the help of one of the most
famous fractals: the Sierpinski triangle Knaster and Kuratowski (1927). The process of
building this triangle consists of the following steps:

1. Start from an equilateral triangle.
2. Find the middle points of each side of this triangle.
3. Connect the three points obtained in step 2 to obtain a new triangle. This triangle is

also equilateral and rotated 180º with respect to the initial position.

Novel pedagogical tool for simultaneous learning of plane geometry and ... 17

4. Remove the triangle built in step 2 from the initial triangle. Now you have three little
triangles inside the initial one. This is the first iteration to build the Sierpinski
triangle.

If the steps 1-4 are repeated in each of these three triangles, nine smaller triangles will be
obtained, which are similar to the previous ones. This is already the second iteration of the
construction and a constant repetition of the steps leads to any iteration of the triangle. The
Sierpinski triangle is theoretically defined as the infinite repetition of the steps 1-4.
However, from a practical point of view, we consider interesting only the building of the first
iterations. This process can be implemented in R with a few lines of code due to the
efficiency of recursive programming and some of the functions contained in the
LearnGeom R package. For example, the code available in the following lines (in italics) is
a possible approach to produce the first six iterations of the Sierpinski triangle. It is
necessary to create a function Sierpinski to call it recursively during the triangle
construction:

> x_min <- -6; x_max <- 6; y_min <- -6; y_max <- 6

> CoordinatePlane(x_min, x_max, y_min, y_max)

> n <- 3; C <- c(0,0); l <- 5

> Tri <- CreateRegularPolygon(n, C, l)

> it <- 6

> Sierpinski <- function(Tri, it){

if (it==1){

Draw(Tri,"black")

}

if (it>1){

Sierpinski(CreatePolygon(Tri[1,], MidPoint(Tri[1,],Tri[2,]), MidPoint(Tri

[1,],Tri[3,])), it-1)

Sierpinski(CreatePolygon(Tri[2,] ,MidPoint(Tri[1,],Tri[2,]), MidPoint(Tri

[2,],Tri[3,])), it-1)

Sierpinski(CreatePolygon(Tri[3,] ,MidPoint(Tri[1,],Tri[3,]), MidPoint(Tri

[2,],Tri[3,])), it-1)

}

}

> Sierpinski(Tri, it)

The R code included just displayed is basically the same one that contains the function
Sierpinski of the package. This function allows users to visualize the first iterations of the
fractal avoiding the difficulty of building it (see Fig. 6a). However, for users ready to learn
recursive programming, the best option would be to propose the construction on their own.
The package also contains a function related to the Koch curve, another very well-known
fractal Koch (1904). The most famous version of this fractal is called Koch's snowflake,
which can be obtained by following the next three steps, starting from a segment in the
plane (see Fig. 6b):

18 Briz-Redón Á, Serrano-Aroca Á

a b

c d

e f

Figure 6.

Examples of different fractals produced with the functions of the LearnGeom package. The
examples obtained with FractalSegment show how minimal modifications of the parameters
can lead to very different curves.
a: First seven iterations of the Sierpinski triangle.
b: First three first iterations of the Koch's curve.
c: First five first iterations of the Koch's as obtained with FractalSegment.
d: A modificaction of the first five iterations of the Koch's (c) by changing parameter angle from
60º to 90º.
e: A modificaction of the first five iterations of the Koch's (c) by changing parameter f from 1 to
2.
f: A modificaction of the first five iterations of the Koch's (c) by changing parameters cut1 and
cut2 from 1/3 and 2/3 to 1/5 and 4/5, respectively.

Novel pedagogical tool for simultaneous learning of plane geometry and ... 19

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300308
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300308
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300309
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300309
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300310
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300310
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300311
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300311
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300312
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300312
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300313
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300313
https://doi.org/10.3897/rio.4.e25485.figure6a
https://doi.org/10.3897/rio.4.e25485.figure6a
https://doi.org/10.3897/rio.4.e25485.figure6a
https://doi.org/10.3897/rio.4.e25485.figure6b
https://doi.org/10.3897/rio.4.e25485.figure6b
https://doi.org/10.3897/rio.4.e25485.figure6b
https://doi.org/10.3897/rio.4.e25485.figure6c
https://doi.org/10.3897/rio.4.e25485.figure6c
https://doi.org/10.3897/rio.4.e25485.figure6c
https://doi.org/10.3897/rio.4.e25485.figure6d
https://doi.org/10.3897/rio.4.e25485.figure6d
https://doi.org/10.3897/rio.4.e25485.figure6d
https://doi.org/10.3897/rio.4.e25485.figure6e
https://doi.org/10.3897/rio.4.e25485.figure6e
https://doi.org/10.3897/rio.4.e25485.figure6e
https://doi.org/10.3897/rio.4.e25485.figure6f
https://doi.org/10.3897/rio.4.e25485.figure6f
https://doi.org/10.3897/rio.4.e25485.figure6f

1. Divide the segment into three equal segments.
2. Replace the middle segment by the two sides of an equilateral triangle whose side

length is the same as for the segment being removed. Now, there are four
segments of the same length.

3. Build an equilateral triangle by using the middle segment as its base. Remove this
segment to leave four different segments in the picture.

The continuous application of these steps to each of the new segments that are created
after each iteration produces every state of the fractal. The FractalSegment function,
available in this package, allows the user to create an infinity number of curves whose
construction is based on these steps. The user can experiment with cut, angle and f
parameters to achieve all kind of fractals (starting from iteration it = 0). The cut parameter
allows a non-equal division of the segments at step 1, however, the angle parameter allows
the user to build more than an equilateral triangle at step 2. Finally, the f parameter, which
is a positive number, produces a length enlargement or a reduction for the new segments
at each iteration. Users are free to try these parameters and produce some fractals like
those shown in figures Fig. 6c, d, e, f. As it can be observed in these figures, the fractal
complexities and diversities are enormous, including auto-intersections. For this reason, to
display fractals for the first iterations is really helpful to better understand the underlying
process of construction.

Generation of curves

A trochoid is a closed curve that can be obtained by the conjunction of three geometric
figures: two circles, from which one of them is fixed and the other mobile, and a mobile
point, which is connected to the mobile circle. There are three parameters to characterize
each trochoid: the fixed circle radius, the mobile circle radius and the distance from the
mobile point to the center of the mobile circle Armon (1996).

The presence of these parameters can be used to define a trochoid as a set of
parametrical equations, involving trigonometry functions. However, as it was first proposed
by Abelson and DiSessa (1986) with the aid of the LOGO turtle, these curves can be
approximated by iteratively drawing segments of certain lengths and angles. The LOGO
turtle, which originally was a real robot developed at Massachusetts Institute of Technology
at the end of the 60s, refers to an on-screen cursor implemented in the LOGO language
that was capable of responding to easy instructions from the user (basic direction setting of
the turtle and rectilinear movements). This turtle is also available in R in the package
TurtleGraphics. As it is shown in the publication of Abelson and DiSessa (1986), the
procedure to obtain any trochoid needs a pair of angles and a pair of lengths (and an initial
point to start the curve). An iterative process is then defined based on these angles and
lengths, which makes possible the continuous generation of every kind of trochoid.

This package also includes a function called Star, which can be utilised to represent very
different star-like objects as another application of the LOGO turtle also taken from Abelson
and DiSessa (1986). This function is based on the generation of the object by drawing

20 Briz-Redón Á, Serrano-Aroca Á

segments iteratively as Duopoly. The variation of the parameters included in the function
render possible to understand the basis of the process and can incite the user to achieve
many kinds of star-like shapes. Thus, Fig. 7 represents some examples of use of the
functions Duopoly (Fig. 7a, b, c) and Star (Fig. 7d, e, f). The parameters color and time
available in the function let the user to appreciate all the points that are drawn in the
generation of the curve and the order at which they are drawn.

a b

c d

e f

Figure 7.

Examples of use of the functions Duopoly and Star.
a: Example of use of the function Duopoly. Creation of an astroid.
b: Example of use of the function Duopoly. Creation of a nefroid.
c: Example of use of the function Duopoly. Creation of an epicycloid
d: Example of use of the function Star. Parameter angle is set to 0º.
e: Example of use of the function Star. Parameter angle is set to 20º.
f: Example of use of the function Star. Parameter angle is set to 80º.

Novel pedagogical tool for simultaneous learning of plane geometry and ... 21

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300412
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300412
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300413
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300413
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300414
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300414
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300415
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300415
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300416
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300416
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300417
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300417
https://doi.org/10.3897/rio.4.e25485.figure7a
https://doi.org/10.3897/rio.4.e25485.figure7a
https://doi.org/10.3897/rio.4.e25485.figure7a
https://doi.org/10.3897/rio.4.e25485.figure7b
https://doi.org/10.3897/rio.4.e25485.figure7b
https://doi.org/10.3897/rio.4.e25485.figure7b
https://doi.org/10.3897/rio.4.e25485.figure7c
https://doi.org/10.3897/rio.4.e25485.figure7c
https://doi.org/10.3897/rio.4.e25485.figure7c
https://doi.org/10.3897/rio.4.e25485.figure7d
https://doi.org/10.3897/rio.4.e25485.figure7d
https://doi.org/10.3897/rio.4.e25485.figure7d
https://doi.org/10.3897/rio.4.e25485.figure7e
https://doi.org/10.3897/rio.4.e25485.figure7e
https://doi.org/10.3897/rio.4.e25485.figure7e
https://doi.org/10.3897/rio.4.e25485.figure7f
https://doi.org/10.3897/rio.4.e25485.figure7f
https://doi.org/10.3897/rio.4.e25485.figure7f

Conclusions

Currently, there are some powerful and useful free software products, such as GeoGebra
and Scratch, to learn geometry at undergraduate level. However, all of them present some
limitations when compared to common programming languages. Although the R
programming language is mainly focused on statistical computing, it can also be employed
as a pedagogical tool for simultaneously learning mathematical concepts and advanced
programming skills. In this work, an R programming package named LearnGeom is
presented as a novel pedagogical tool that provides a set of functions to facilitate the
exploration of plane geometry while programming in R. Beginning with some easy
functions and definitions, the combined use of the functions included in the package with
the own capabilities of the language itself offers a novel teaching source for current
secondary educators.

Conflict of Interest

The authors declare that they have no conflict of interest.

Acknowledgements

The authors would like to acknowledge the Universidad Católica de Valencia San Vicente
Mártir and the Ministry of Economy, Industry and Competitiveness for the financial support
of this work through the 2018-231-001UCV and MAT2015-69315-C3-1-R grants
respectively.

References

• Abelson H, DiSessa AA (1986) Turtle geometry: The computer as a medium for
exploring mathematics. MIT press

• Akkaya A, Tatar E, Kağızmanlı TB (2011) Using Dynamic Software in Teaching of the
Symmetry in Analytic Geometry: The Case of GeoGebra. Procedia - Social and
Behavioral Sciences 15: 2540‑2544. https://doi.org/10.1016/j.sbspro.2011.04.141

• Akpinar Y, Aslan Ü (2015) Supporting Children’s Learning of Probability Through Video
Game Programming. Journal of Educational Computing Research 53 (2): 228‑259.
https://doi.org/10.1177/0735633115598492

• Armon U (1996) Representing trochoid curves by DUOPOLY procedure. International
Journal of Mathematical Education in Science and Technology 27 (2): 177‑187. https://
doi.org/10.1080/0020739960270202

• Benton L, Hoyles C, Kalas I, Noss R (2016) Building mathematical knowledge with
programming: insights from the ScratchMaths project.

• Benton L, Saunders P, Kalas I, Hoyles C, Noss R (2018) Designing for learning
mathematics through programming: A case study of pupils engaging with place value.

22 Briz-Redón Á, Serrano-Aroca Á

https://doi.org/10.1016/j.sbspro.2011.04.141
https://doi.org/10.1177/0735633115598492
https://doi.org/10.1080/0020739960270202
https://doi.org/10.1080/0020739960270202

International Journal of Child-Computer Interaction https://doi.org/10.1016/
j.ijcci.2017.12.004

• Booth KHV (1958) Programming for an automatic digital calculator. Butterworths
• Briz-Redón Á, Serrano-Aroca Á (2018) LearnGeom: An R-package for Learning Plane

Geometry. URL: https://doi.org/10.5281/zenodo.1211646
• Du Boulay B (1986) Some difficulties of learning to program. Journal of Educational

Computing Research 2 (1): 57‑73.
• Falloon G (2016) An analysis of young students' thinking when completing basic coding

tasks using Scratch Jnr. On the iPad. Journal of Computer Assisted Learning 32 (6):
576‑593. https://doi.org/10.1111/jcal.12155

• Feurzeig W, Papert S, Lawler B (2011) Programming-languages as a conceptual
framework for teaching mathematics. Interactive Learning Environments 19 (5):
487‑501. https://doi.org/10.1080/10494820903520040

• Foerster K (2016) Integrating Programming into the Mathematics Curriculum:
Combining Scratch and Geometry in Grades} 6 and 7. Proceedings of the 17th Annual
Conference on Information Technology Education.

• Govender I (2009) Learning to program, learning to teach programming: pre-and in
service teachers' experiences of an object-oriented language. University of South Africa

• Grunbaum B, Shephard GC (1977) Tilings by regular polygons. Mathematics Magazine
50 (5): 227‑247.

• Hohenwarter M (2002) GeoGebra: Ein Softwaresystem für dynamische Geometrie und
Algebra der Ebene. Paris Lodron University, Salzburg, Austria

• Howe JA, Ross PM, Johnson KR, Plane F, Inglis R (1981) Teaching mathematics
through programming in the classroom. Computer Assisted Learning. https://
doi.org/10.1016/b978-0-08-028111-7.50017-9

• Knaster B, Kuratowski C (1927) A connected and connected im kleinen point set which
contains no perfect subset. Bulletin of the American Mathematical Society 33 (1):
106‑110. https://doi.org/10.1090/s0002-9904-1927-04326-9

• Koch H (1904) On a Continuous Curve Without Tangent Constructable from Elementary
Geometry. Classics on fractals.

• Lehrer R, DeBernard A (1987) Language of learning and language of computing: The
perceptual-language model. Journal of Educational Psychology 79 (1): 41‑48. https://
doi.org/10.1037/0022-0663.79.1.41

• Linn M, Dalbey J (1985) Cognitive consequences of Programming Instruction:
Instruction, Access, and Ability. Educational Psychologist 20 (4): 191‑206. https://
doi.org/10.1207/s15326985ep2004_4

• Lu PJ, Steinhardt PJ (2007) Decagonal and Quasi-Crystalline Tilings in Medieval Islamic
Architecture. Science 315 (5815): 1106‑1110. https://doi.org/10.1126/science.1135491

• Mandelbrot B (1967) How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension. Science 156 (3775): 636‑638. https://doi.org/10.1126/
science.156.3775.636

• Mandelbrot BB (1977) Fractals. Wiley Online Library
• Mascaró M, Sacristán AI, Rufino M (2014) Teaching and learning statistics and

experimental analysis for environmental science students, through programming
activities in R. Constructionism and Creativity-Proceedings 3rd Intl. Constructionism
Conf.

Novel pedagogical tool for simultaneous learning of plane geometry and ... 23

https://doi.org/10.1016/j.ijcci.2017.12.004
https://doi.org/10.1016/j.ijcci.2017.12.004
https://doi.org/10.5281/zenodo.1211646
https://doi.org/10.1111/jcal.12155
https://doi.org/10.1080/10494820903520040
https://doi.org/10.1016/b978-0-08-028111-7.50017-9
https://doi.org/10.1016/b978-0-08-028111-7.50017-9
https://doi.org/10.1090/s0002-9904-1927-04326-9
https://doi.org/10.1037/0022-0663.79.1.41
https://doi.org/10.1037/0022-0663.79.1.41
https://doi.org/10.1207/s15326985ep2004_4
https://doi.org/10.1207/s15326985ep2004_4
https://doi.org/10.1126/science.1135491
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.1126/science.156.3775.636

• Mascaró M, Sacristán AI, Rufino M (2016) For the love of statistics: appreciating and
learning to apply experimental analysis and statistics through computer programming
activities. Teaching Mathematics and its Applications 35 (2): 74‑87. https://
doi.org/10.1093/teamat/hrw006

• Masri RM, Ting SH, Zamzamir Z, Ma'amor RLZR (2017) The effects of using GeoGebra
teaching strategy in Malaysian secondary schools: A case study from Sibu, Sarawak.
Geografia-Malaysian Journal of Society and Space 12 (7): .

• McCracken DD (1957) Digital computer programming. John Wiley & Sons
• Palumbo D (1990) Programming Language/Problem-Solving Research: A Review of

Relevant Issues. Review of Educational Research 60 (1): 65. https://
doi.org/10.2307/1170225

• Papert S (1980) Mindstorms: Children, computers, and powerful ideas. Basic Books,
Inc.

• Priatna N (2017) AIP Conference Proceedings. The application of brain-based learning
principles aided by GeoGebra to improve mathematical representation ability. https://
doi.org/10.1063/1.4995157

• Pruim R, Kaplan DT, Horton NJ (2017) The mosaic Package: Helping Students to Think
with Data Using R. R Journal.

• Resnick M, Maloney J, Monroy-Hernández A, Rusk N, Eastmond E, Brennan K, Millner
A, Rosenbaum E, Silver J, Silverman B (2009) Scratch: programming for all.
Communications of the ACM 52 (11): 60‑67.

• Saha RA, Mohd Ayub AF, Tarmizi RA (2010) The Effects of GeoGebra on Mathematics
Achievement: Enlightening Coordinate Geometry Learning. Procedia - Social and
Behavioral Sciences 8: 686‑693. https://doi.org/10.1016/j.sbspro.2010.12.095

• Schattschneider D (1981) In Praise of Amateurs. The Mathematical Gardner. https://
doi.org/10.1007/978-1-4684-6686-7_16

• Soloway E (1993) Should we teach students to program? Communications of the ACM
36 (10): 21‑25.

• Spohrer JC, Soloway E, Pope E (1985) Where the bugs are. ACM SIGCHI Bulletin.
• Statz J, Miller L (1978) The Egg Series: Using Simple Computer Models. The

Mathematics Teacher 71 (5): 459‑467.
• Team RC (2018) R: A Language and Environment for Statistical Computing. URL:

https://www.R-project.org/
• Wang H, Huang I, Hwang G (2015) Comparison of the effects of project-based

computer programming activities between mathematics-gifted students and average
students. Journal of Computers in Education 3 (1): 33‑45. https://doi.org/10.1007/
s40692-015-0047-9

• Zengin Y, Furkan H, Kutluca T (2012) The effect of dynamic mathematics software
geogebra on student achievement in teaching of trigonometry. Procedia - Social and
Behavioral Sciences 31: 183‑187. https://doi.org/10.1016/j.sbspro.2011.12.038

24 Briz-Redón Á, Serrano-Aroca Á

https://doi.org/10.1093/teamat/hrw006
https://doi.org/10.1093/teamat/hrw006
https://doi.org/10.2307/1170225
https://doi.org/10.2307/1170225
https://doi.org/10.1063/1.4995157
https://doi.org/10.1063/1.4995157
https://doi.org/10.1016/j.sbspro.2010.12.095
https://doi.org/10.1007/978-1-4684-6686-7_16
https://doi.org/10.1007/978-1-4684-6686-7_16
https://www.R-project.org/
https://doi.org/10.1007/s40692-015-0047-9
https://doi.org/10.1007/s40692-015-0047-9
https://doi.org/10.1016/j.sbspro.2011.12.038

	Abstract
	Keywords
	Introduction
	Basic functions of the package
	Basic level
	Affine transformations
	Reflection
	Rotation
	Similarity
	Translation
	Shear and Homothety
	Points of the triangle
	Building a triangle and its middle points
	Orthogonal vectors and auxiliary points
	Lines creation and intersection

	Intermediate level
	Tessellations
	Setting an initial hexagon
	Contiguous hexagons
	Creating tessellations
	Working on the real world

	Advanced level
	Recursive programming
	Generation of curves

	Conclusions
	Conflict of Interest
	Acknowledgements
	References

