Research Ideas and Outcomes : Project Report
|
Corresponding author: Jingyuan Chen (cjy.elaine@gmail.com), Deepika Bagga (deepikabagga13@gmail.com)
Received: 09 Mar 2017 | Published: 13 Mar 2017
© 2017 Jingyuan Chen, Deepika Bagga
This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Citation: Chen J, Bagga D (2017) Noise paradoxically increases reliability metrics. Research Ideas and Outcomes 3: e12641. https://doi.org/10.3897/rio.3.e12641
|
Lower signal to noise ratio (SNR) of the scanning environment is generally considered to exert a negative impact on the inter-/intra-subject consistency of resting state functional connectivity (RSFC) metrics. Here, we show through simulations that this assumption is not always true - poor SNR may paradoxically increase reliability metrics of RSFC under certain circumstances, due to the reduced senstivity to dynamic changes in brain connectivity.
test-retest reliability; resting state functional connectivity
The reliability of a functional connectivity (FC) metric, typically quantified by its inter-scan variability, reflects the robustness of this metric as a potential biomarker for neuroscience and clinical applications. However, several studies have recently reported that resting state functional connectivity (RSFC) may undergo substantial changes across the course of a minute-long scan segment (
Real data: 10-min RS scans from 10 healthy subjects aged 36 +/- 12 yrs (4 females) were collected at 3T (GE Signa 750, 32 channel coil, Simultaneous MultiSlice (SMS) EPI with blipped CAIPI sequence (
Simulated data with various SNR levels: Low-frequency bands (< 0.2 Hz) of the preprocessed real data were further de-noised by linearly projecting out several nuisance factors (including six motion parameters, RVHRCOR (
Reliability of RSFC at different SNR levels: To obtain multiple sessions of each subject, each subject’s scan was divided into 2, 3, or 4 evenly distributed but non-overlapping windows, within which linear Pearson correlation with respect to a posterior cingulate cortex (PCC) seed was calculated. Between-subject, within-subject variability, and the intra-class correlation (ICC(3,1)) (
Fig.
A: The voxel-wise ICC values of RSFC with respect to a PCC seed under different SNR levels (SNR is defined as the ratio of the amplitude of fluctuations < 0.2 Hz to > 0.2 Hz, averaged across voxels in the slice, each column) and session numbers (by partitioning each subject’s scan to multiple windows, each row). B: ICC values (a), between-subject (b) and inter-subject (c) variability averaged within all voxels of the displayed slice in A (‘All’, numbers in the parenthesis are the window number), and voxels significantly correlated with the PCC seed at the group level (‘Active’, evaluated across 10 subjects using the entire scan dataset filtered < 0.2 Hz, p < 0.05, uncorrected)
In accordance with observations above, RSFC estimated with lower SNR stabilizes faster than higher SNR data. The shortest scan length that well replicates PCC correlation obtained using the whole scan dataset (spatial correlation > 0.95) is on average 15s (p = 0.04 for 10 subjects) shorter for non-filtered data (<1.4 Hz) compared to the “true signal” (filtered < 0.2 Hz).
Through simulations, we have shown that lower SNR may lead to reduced variability across scan sessions due to mitigated sensitivity to time-varying changes of brain RSFC. By truncating a single subject’s scan to multiple sub-sessions, the scan length estimated in the current project is shorter than the length recommended by recent reports (
This work was completed during Brainhack Vienna 2016.
Chen J contributes to data analysis and writing; Bagga D contributes to discussion and writing.