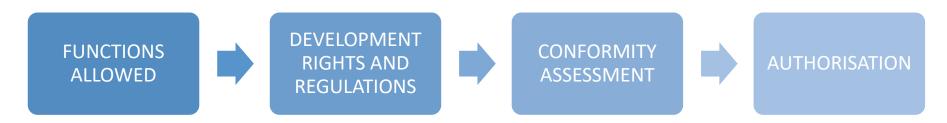
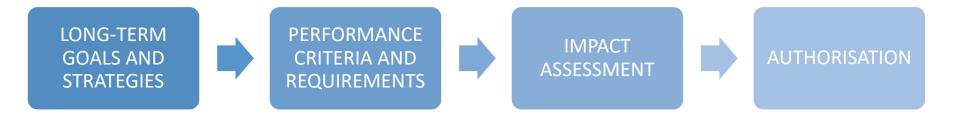


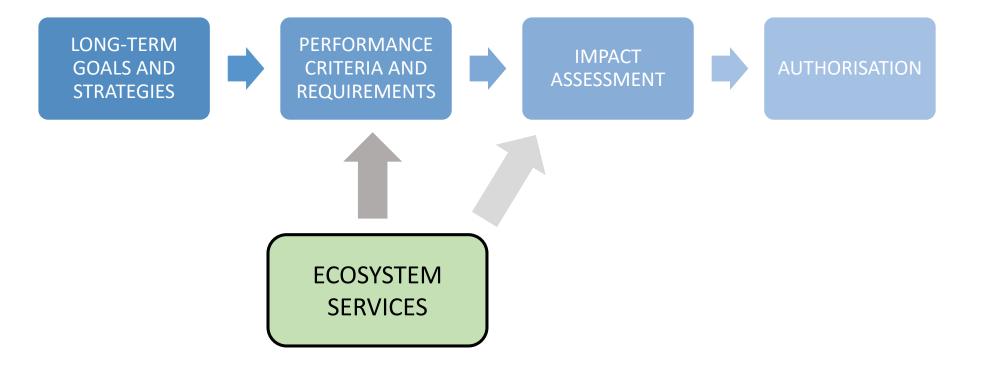
Promoting research excellence in nature-based solutions for innovation, sustainable economic growth and human well-being in Malta.

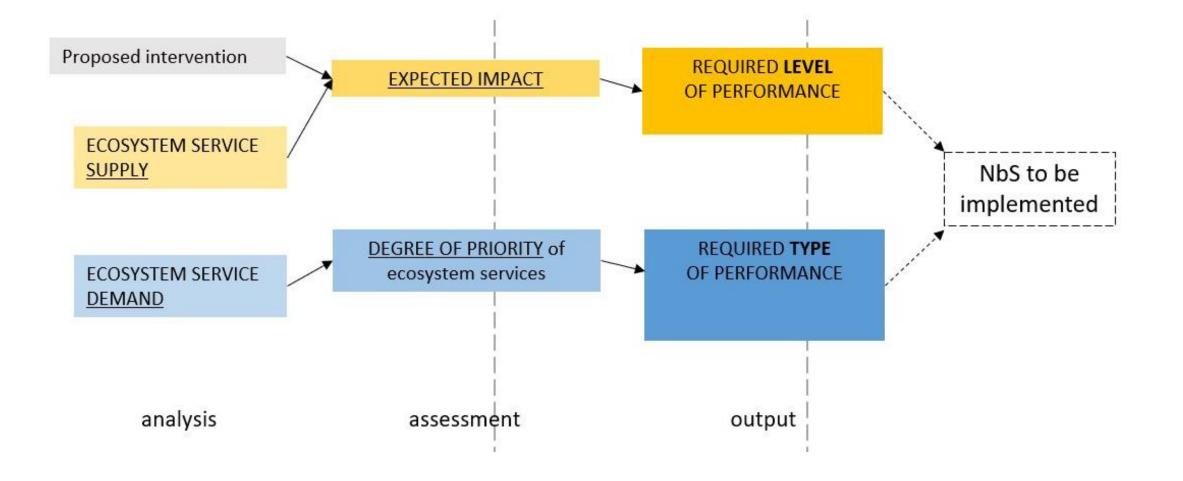

Nature-based solutions and performance-based planning

Davide Geneletti¹ and Chiara Cortinovis² ¹University of Trento ²Humboldt Universität Berlin


This project receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 809988.

for each zone:


- plan as a regulatory tool
- predictability of the outcomes
- lack of flexibility



- plan as a strategic tool
- flexibility
- dialogue and negotiation
- Higher management complexity

Concepts for a performance-based approach in Trento

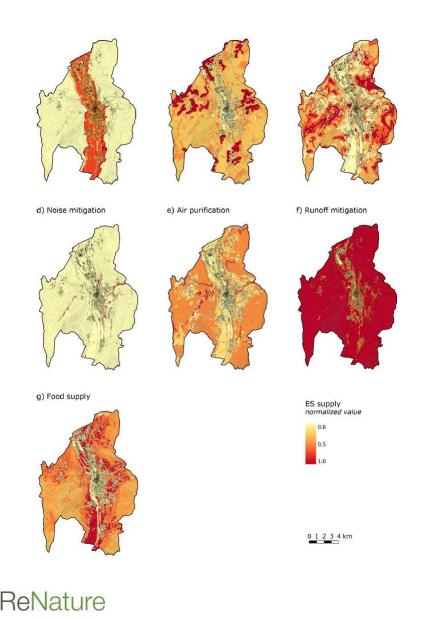
Photo by D. Geneletti

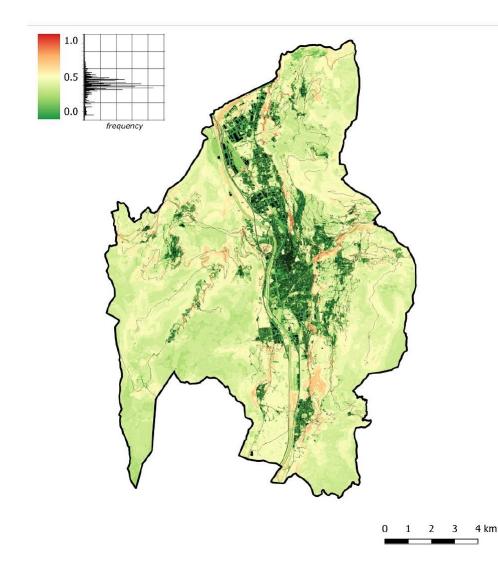
Assessing ecosystem services supply

Urban ecosystem service	Supply indicator	Method
Microclimate regulation (cooling)	Cooling capacity of green infrastructure	Spatial modelling based on <i>Zardo et al.</i> (2017)
Habitat provision	Relative richness of focal species	Ecological modelling (see <i>Pedrini et al., 2013</i> - <i>Life+ T.E.N.</i>)
Recreation	Recreation Opportunity Spectrum	ESTIMAP-recreation model with inputs from local experts (see <i>Cortinovis et al., 2018</i>)
Noise mitigation	Reduction of traffic noise at selected receivers (residential buildings)	Spatial modelling through QGIS OpeNoise plug-in
Air purification	PM10 deposition	Proxy based on vegetation typology and distance from main sources (<i>Derkzen et al., 2015</i>)
Runoff mitigation	Runoff avoided due to infiltration	Proxy based on the percentage of permeable areas
Food provision	Land suitability for agriculture	Proxy based on a combination of current crop typology and suitability factors

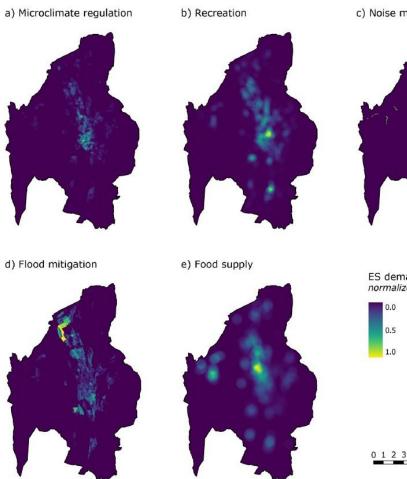
rationale: ES supply reduced due replacement of existing green infrastructure

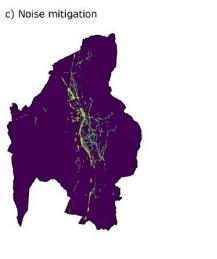
Contents lists available at ScienceDire


Ecosystem Services

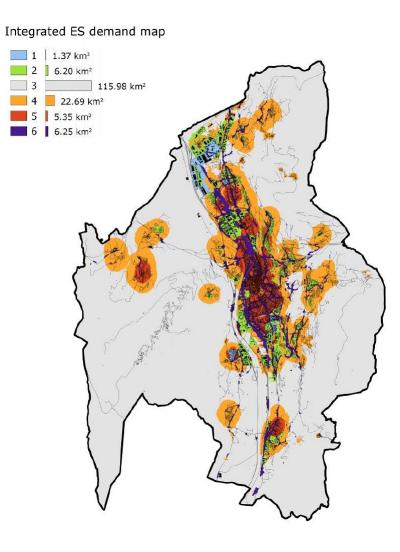

SERVICES

Assessing ecosystem services supply




Urban ecosystem service	Intensity of hazard / deprivation	Exposure and vulnerability	Benefitting area
Microclimate regulation	Class of cooling effect	Total population + vulnerable (children and elderlies)	100-m buffer around the cell
Recreation	Distance from the closest area offering high-level recreational opportunities	Total population	300-m buffer around the cell
Noise mitigation	Noise from roads and railroads above 65 dB	Residential buildings	Buildings shielded by green barriers
Runoff mitigation	Percentage of impermeable surfaces	Total population + areas for commercial, productive, and service use	Urban sub-watershed
Food provision	Distance from the closest community garden	Families without private garden	500-m buffer around the cell

rationale: benefits produced by new NbS depend on the level of demand


Assessing ecosystem services demand

ES demand normalized value

0 1 2 3 4 km

11

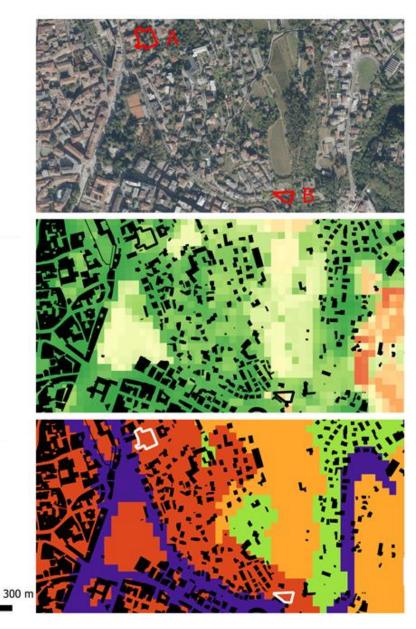
How much? = level of performance

relates to the **impact** of the development on the supply of ecosystem services

What?

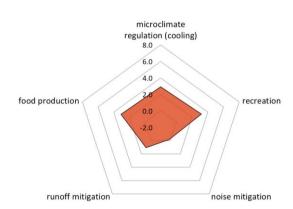
= type of performance

relates to the **demand** for ecosystem services in the affected area


1.0

0.5

0.0

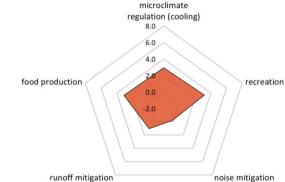

1

5

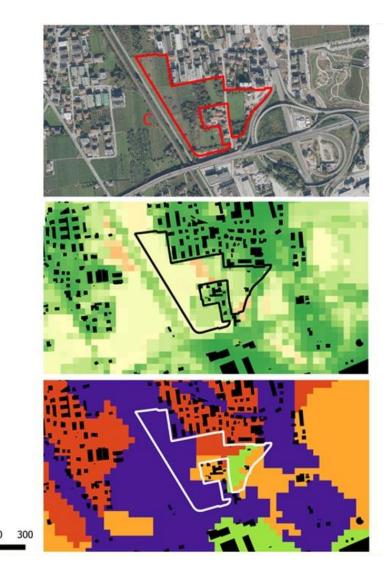
different level of impacts on existing supply but same priorities due to similar demand profiles

A-> 0,23 -> medium impact-> 4 pointsB-> 0,54 -> high impact-> 6 points

	cluster 5
noise mitigation	0 (-0.2)
microclimate regulation	4 (2.9)
runoff mitigation	2 (1.0)
food supply	4 (3.1)
recreation	4 (3.2)


test 1 - in-fill development in vacant lots

possible solution: urban green area + allotment garden



	cluster 5
noise mitigation	0 (-0.2)
microclimate regulation	4 (2.9)
runoff mitigation	2 (1.0)
food supply	4 (3.1)
recreation	4 (3 2)

1.0

0.5

0.0

different priorities in different areas > promoting efficiency in resource allocation

• C -> 0,41 -> high impact -> 6 points

	cluster 2	cluster 4	cluster 5	cluster 6
noise mitigation	0 (-0.2)	0 (-0.2)	0 (-0.2)	4 (4.9)
microclimate regulation	1 (0.6)	1 (0.0)	4 (2.9)	3 (1.5)
runoff mitigation	4 (2.3)	0 (-0.1)	2 (1.0)	2 (0.8)
food supply	1 (0.6)	2 (0.7)	4 (3.1)	3 (1.5)
recreation	2 (1.0)	1 (0.3)	4 (3.2)	3 (1.7)

test 2 – large urban expansion

possible solution: floodable green area + green barrier for noise shielding

	cluster 2	cluster 4	cluster 5	cluster 6
noise mitigation	0 (-0.2)	0 (-0.2)	0 (-0.2)	4 (4.9)
microclimate regulation	1 (0.6)	1 (0.0)	4 (2.9)	3 (1.5)
runoff mitigation	4 (2.3)	0 (-0.1)	2 (1.0)	2 (0.8)
food supply	1 (0.6)	2 (0.7)	4 (3.1)	3 (1.5)
recreation	2 (1.0)	1 (0.3)	4 (3.2)	3 (1.7)

Discussion points

- A proof-of-concept. Municipal administration will have to take a key role in guiding the process:
 - ES selection and indicator weighting to reflect planning objectives
 - levels of complexity
 - acceptable ES trade-offs
 - Transparency of the information
- Innovative use of urban ecosystem service knowledge (demand and supply)
- Towards systematic integration of NbS in urban planning

references (open access)

D Springer Open

https://link.springer.com/book/10.1007% 2F978-3-030-20024-4

SPRINGER BRIEFS IN ENVIRONMENTAL SCIENCE **Davide Geneletti Chiara Cortinovis** Linda Zardo **Blal Adem Esmail Planning for** Ecosystem Services in Cities

Landscape and Urban Planning 201 (2020) 103842

A performance-based planning approach integrating supply and demand of urban ecosystem services

Chiara Cortinovis^{a,b}, Davide Geneletti^{a,*}

^a Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Italy ^b Centre for Environmental and Climate Research, Lund University, Sweden

https://doi.org/10.1016/j.landurbplan.2020.103842

 Cortinovis, C., & Geneletti, D. (2020). A performance-based planning approach integrating supply and demand of urban ecosystem services. Landscape and Urban Planning, 201. <u>https://doi.org/10.1016/j.landurbplan.2020.103842</u>

Thank you!

Planning for Ecosystem Services @University of Trento

www.planningfores.com

