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Executive summary

We  will  analyze  variations  in  brain  anatomy  and  create  the  first  integrated  software
environment to extract patterns from brains and target differences related to inter-individual
variability,  pathology,  development,  or  degeneration.  We  will  evaluate  how  well  these
differences  can  help  diagnose  and  predict  treatment  outcome  for  major  depressive
disorder, which affects millions of Americans, but our work is intended to be applied to any
mental illness, such as Alzheimer’s disease, bipolar disorder, schizophrenia – indeed to
analyze differences in brain anatomy between any two populations.
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Research & Related Other Project Information

Facilities & Other Resources

Columbia University and Columbia University Medical Center (CUMC) Columbia University
was founded in 1754 by the royal grant of George II of England and its purpose was for the
instruction  of  youth  in  the  Learned  Languages,  and  the  Liberal  Arts  and  Sciences.  A
medical faculty was organized in 1767, and was the first institution in the North American
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Colonies to bestow the degree of Doctor of Medicine. In 1814, Columbia College merged
with the College of Physicians and Surgeons, which had obtained an independent charter
in 1807. Its use was primarily for servicing the Presbyterian populace. However, it soon
began welcoming everyone and became, as noted on a tablet that remains on the hospital
today, "For the Poor of New York without Regard to Race, Creed, or Color." An agreement
was signed in 1911, between Columbia University the College of Physicians and Surgeons
and  Presbyterian  Hospital.  Finally  in  1928,  the  Columbia-Presbyterian  Medical  Center
opened up for operation in the Washington Heights section of Manhattan. Since that time,
Columbia  University  Medical  Center  has  experienced  phenomenal  growth  and
development and is now situated on a 20 acre campus and makes up almost half of the
close  to  $2  billion  budget  of  Columbia  University.  Columbia  University  Medical  Center
provides international leadership in basic, pre-clinical, and clinical research, in medical and
health sciences education, and in patient care. The medical center trains future leaders
and includes the dedicated work of many physicians, scientists, public health professionals,
dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of
Public  Health,  the  College  of  Dental  Medicine,  the  School  of  Nursing,  the  biomedical
departments of the Graduate School of Arts and Sciences, and allied research centers and
institutions.  Columbia  University  Medical  Center  is  home  to  Columbia’s  College  of
Physicians & Surgeons, which is among the most selective medical schools in the country,
and the largest medical  research enterprise in New York and one of the largest in the
United States. It currently boasts some 13 Howard Hughes Medical Institute investigators,
47 members of the Institute of Medicine, 26 members of the American Academy of Arts
and Sciences,  and 16 Nobel  laureates in  Medicine or  Physiology –-  two of  which are
presently on staff. For more information, please visit www.cumc.columbia.edu.

Environment – Contribution to Success:

Dr. Arno Klein (P.I.) and Dr. Ramin Parsey (Significant Contributor) each work in an office at
NYSPI. Dr. Klein’s office opens out into a computer laboratory of fellow researchers and
students, with support staff located in neighboring floors. There is office space in this open
computer laboratory for the postdoctoral research scientist. Individual computers are able
to access centralized services such as NAS (Network Attached Storage) servers, email
servers and redundant backup servers and a tape system. These systems are maintained
and upgraded by the Information Technology team in collaboration with the institutional
networking group. All computers are loaded with a variety of productivity software including
statistical,  graphics,  data  and  text  processing  suites.  The  New  York  State  Psychiatric
Institute  (NYSPI)  Formerly  the  Pathological  Institute,  the  New  York  State  Psychiatric
Institute was founded in 1896 and began its affiliation with the Columbia University College
of  Physicians  &  Surgeons  in  1925.  It  has  since  then  grown  into  a  pioneering  world-
renowned facility for the advancements in mental health research and hygiene. The New
York State Psychiatric Institute (NYSPI) has as its mission “the search for knowledge about
the causes, prevention, and treatment of mental illness.” It is a vibrant department and is
chaired  by  Dr.  Jeffrey  Lieberman,  an  international  expert  in  the  area  of  schizophrenia
treatment. Laboratories are located in the north part of the building and space for inpatient
care, outpatient clinics, and education is in the south part of the building. Two enclosed
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bridges connect the new building to the Kolb Annex and the Milstein Hospital Building. In
1985 the Lawrence C. Kolb Research Annex was added to the original facility, which has
50,000 square feet of laboratory space plus the clinical research units described above,
office library, and other areas designed for its functioning as a hospital. The Annex also
contains  the  Howard  Hughes  Institute  supporting  Nobel  Laureate  Dr.  Eric  Kandel  and
affiliated investigators. This state supported facility is on the campus of the CUMC and has
been  one  of  the  leading  institutions  for  psychiatric  research  for  over  100  years.  Its
resources, research faculty and staff, combined with those of the Research Foundation for
Mental Hygiene at NYSPI and Columbia University Department of Psychiatry, have made it
one of the nation’s foremost psychiatric research centers.

CLINICAL, LABORATORY, AND SUPPORT FACILITIES

The New York State Psychiatric Institute’s newest building was dedicated in May of 1997
and is now known as the Pardes Building. This 6-story building contains approximately
330,000  sq  ft  of  state-ofthe-  art  laboratory,  clinical  research  and  educational  facilities,
including the inpatient research units and outpatient clinics that are heavily utilized by the
fellows and mentors in this program. Trainees also have access to a host of laboratories
and clinical facilities at CUMC and NYPH, especially the structural and functional imaging
resources in the Department of Radiology, the Irving Center for Clinical Research (GCRC)
and the Center for Neurobiology and Behavior, which are all in nearby buildings. Trainees
have full access to an excellent library, computer facilities, photocopying, and the animal
care facilities in the Kolb Annex building and elsewhere at  CUMC. The Department of
Psychiatry/Division  of  Molecular  Imaging  and  Neuropathology  (MIND)  at  Columbia
University/NYSPI comprises several components: wet laboratories including biochemistry,
neurophysiology, molecular biology, pharmacology, neurohistology and an image analysis
facility for quantitative autoradiography and quantitative morphometry. The MIND division
has clinical office space for screening, evaluation, and treatment of study participants. We
also have a bank of -80°C freezers for storage of samples.

The MIND Computer  Center is  equipped with  several  multi-core  Apple  PowerMac and
MacPro  workstations  running  Mac  OS  X  10.5  and  10.6.  The  lab  is  networked  via
1000Mbps  (gigabit)  copper  Ethernet  and  CISCO  Catalyst  switches.  The  workstations
connect to a Dell Poweredge 6600 computational server with four Intel Xeon MP 2.50GHz
CPUs and 24GB of RAM running RedHat Enterprise Linux 3. This server also provides a
collection of web applications built using a MySQL database, the lighttpd web server and
the Django framework. Printers include a Samsung color laser printer and several high
capacity HP black and white printers. The facility also hosts 2 40U cabinets powered with 4
3phase 20Amp circuits to which they are backed up by a generator.
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Specific research plan

Specific aims

The largest  clinical  trial  of  major  depressive disorder  (MDD) ever  conducted,  STAR*D,
indicates that two-thirds of patients treated with a first-step antidepressant do not achieve
remission  of  symptoms [Trivedi  et  al.  2006].  Depression  is  a  heterogeneous  condition
whose biological endophenotypes are difficult to categorize and therefore difficult to tailor
treatment for. More robust and specific biomarkers of depression that can distinguish these
endophenotypes  would  allow for  more  effective  psychiatric  treatment  and prediction  of
treatment  outcome.  Researchers  have recently  reported prediction of  major  depressive
disorder (MDD) severity measures from brain grey matter volumes of individual magnetic
resonance imaging (MRI) scans [Mwangi et al. 2011]. Other anatomical measures derived
from neuroimaging such as cortical  thickness and gyrification index have been used to
characterize  depression  [Penttilä  et  al.  2009,  Mangin  et  al.  2010 ].  To  our  knowledge,
however,  no  one  has  attempted  to  clinically  diagnose  or  predict  any  mental  disorder,
including depression, based on the folding pattern of  the brain,  which is thought to be
implicated in the pattern of brain wiring and in heritable and developmental constraints.

Our hypothesis is that differences in the folding pattern of a brain can provide biomarkers
for depression. The difficulty in testing this hypothesis is that there is no established way to
rigorously identify or compare the folding patterns across brains in a detailed way, let alone
to transition one pattern into another to elucidate differences across brains or across time.
And any anatomical differences that could be attributable to depression are masked by the
great  natural  variation  that  exists  across  brains.  Therefore,  to  find  biomarkers  that
distinguish endophenotypes of depression, we need to first catalog this natural variation
and variation within categories of depressed patients. Then we need to establish a means
by  which  we  can  compare  folding  patterns  across  brains.  To  this  end  we  propose  to
introduce  automated  and  robust  algorithms  for  extracting,  formally  depicting,  and
quantifying the shapes of folding patterns of the brain in order to target differences related
to interindividual variability, pathology, development, or degeneration. We will show that the
automated  brain  feature  extraction  and  anatomical  labeling  open  source  software
infrastructure that we have built, called

Mindboggle,  is  uniquely  suited  to  the  development  of  such  algorithms.  Cataloging
variations in the folding pattern of the human brain will permit researchers to situate an
individual’s  brain  pattern  within  the  distribution  of  possible  patterns  that  characterize
healthy conditions and depression. To identify folding pattern biomarkers of depression we
will pursue the following goals:

Aim 1: To catalog the most prominent variants of brain folding patterns in healthy and
depressed  individuals,  we  will  use  the  Mindboggle  software  and  anatomical  database
under  development  by  the  P.I.  to  automate  extraction  and  identification  of  anatomical
features such as sulcal fundi from hundreds of MRIs and depict each folding pattern as a
graph.
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Aim 2: To generate a visual representation of a single or multiple brain graphs (Aim 1) that
can be interpreted by a non-neuroscientist or clinician, we will automatically construct an
intuitive tree diagram that will enable one to visually pinpoint differences in anatomy across
individuals or groups of individuals.

Aim 3: To determine which features of a folding pattern act as diagnostic and predictive
biomarkers of MDD, we will visually and quantitatively assess differences (Aim 2) across
healthy, remitter, and nonremitter MDD populations.

By enabling researchers to explore and analyze individual and group brain folding patterns,
the proposed coherent and comprehensive software interface will aid researchers in their
search for biomarkers of depression and other mental disorders.

Research strategy

1 Significance

Depression is a heterogeneous condition whose biological endophenotypes are difficult to
categorize and therefore difficult to tailor treatment for. More robust and specific biomarkers
of depression that can distinguish these endophenotypes would allow for more effective
psychiatric  treatment  and  prediction  of  treatment  outcome.  Researchers  have  recently
reported prediction of major depressive disorder (MDD) severity measures from brain grey
matter  volumes  of  individual  magnetic  resonance  imaging  (MRI)  scans  [Mwangi  et  al.
2011]. Other anatomical measures derived from neuroimaging such as cortical thickness
and gyrification index have been used to characterize depression [Penttilä  et  al.  2009,
Mangin et al. 2010].

To our knowledge, however, no one has attempted to clinically diagnose or predict any
mental disorder, including depression, based on the folding pattern of the brain, which is
thought to be implicated in the pattern of brain wiring and in heritable and developmental
constraints.  There  is  recent  evidence  supporting  developmental  timing  of  differential
cortical  growth [Xu et  al.  2010]  and heritable aspects  to  cortical  folding [Bartley 1997,
Dubois  et  al.  2007,  Dubois  et  al.  2008,  Rogers  et  al.  2010].  Given  this  and heritable
changes in cortical folding associated with disorders [Sheen and Walsh 2003, Guerrini et
al.  2008],  including  for  example schizophrenia  [Sallet  et  al.  2003,  Harris et  al.  2004,
Stanfield et  al.  2008],  Williams  syndrome  [Van  Essen  2006],  epilepsy  [Guerrini  and
Carrozzo 2001], and bipolar disorder [Penttilä et al. 2009], we expect that such a tool will
be applied much more broadly than the research we are proposing here.

Our hypothesis is that differences in the folding pattern of a brain can provide biomarkers
for depression. This section outlines the primary problems with conventional brain imaging
methods for finding biomarkers of mental disorders such as MDD and outlines a new and
unique software framework developed by the P.I.  that  we will  use to  find brain  folding
feature-based biomarkers of MDD.

Brain Graph Interface 5



Problems  with  conventional  imaging  methods  for  finding  biomarkers  of  mental
disorders

Clinical diagnosis or prediction of treatment outcome for a mental disorder demands that
consistent  differences  be  found  between  a  group  of  individuals  with  and  without  the
disorder. If these differences are to be detected in brain images, they must be located in
corresponding  regions  across  the  brains.  To  establish  correspondences  across  brain
images,  scientists  ubiquitously  co-register  the  images  with  each  other,  usually  via  a
template image. However, registering makes three primary assumptions that compromise
the  search  for  individual  or  group  differences:  1)  Where  two  images  are  similar,  their
anatomical  location is  the same.  However,  similar  looking portions of  two images may
represent different anatomical regions. Conversely, two very different images with different
underlying anatomy can be forced into alignment such that they appear identical. 2) If two
points in one brain correspond to two points in another brain, the intervening points also
match. However, there isn’t a one-to-one, let alone continuous mapping of points across
any two brains. 3) The template is representative of the group being studied. Because of
the great variation across brains and across imaging centers, off-the-shelf templates are
suspect, particularly when they are constructed from subjects with different demographics
than those of interest to the researcher. Other factors that affect registration quality are
often ignored.  For  example,  the P.I.  has demonstrated that  registration algorithms vary
widely in their accuracy [Klein et al. 2009] and even the best require removal of non-brain
matter.  Our  approach  outlined  below  analyzes  anatomical  features  independent  of
registration.

The challenge of treating Major Depressive Disorder (MDD)

An example of a mental disorder that is in great need of a reliable biomarker is MDD. The
largest clinical trial of MDD ever conducted, STAR*D, indicates that two-thirds of patients
treated with a first-step antidepressant do not achieve remission of symptoms [Trivedi et al.
2006]. Furthermore, successive treatment steps lead to diminishing remission rates and a
large number of patients discontinue treatment prematurely due to side effects [Trivedi et
al.  2006].  The  trial  and  error  method  currently  used  in  clinical  practice  often  leads  to
repeated  failures  before  an  effective  treatment  is  identified.  Given  the  relative
ineffectiveness of  treatments and resulting practice of  trial  and error  multiple treatment
steps, there is an urgent need to identify factors to personalize treatment (i.e., markers that
maximize effectiveness and minimize the risk for toxicity). The development of biomarker
predictors of antidepressant response languished after multiple candidates, most notably
the dexamethasone suppression test (DST), proved to have inadequate prognostic clinical
utility (Holsboer 1996). However, the emergence of new technologies in neuroimaging has
sparked new interest in developing biomarkers that might predict antidepressant response.
Because of limited understanding of the pathophysiology of MDD and the limited range of
the mechanism of action of available antidepressants (monoaminergic uptake inhibition or
receptor modulators), we are currently unable to match treatments to patients. In addition
to having access to expertise, resources, and data related to MDD (details in the Approach
section), we wish to focus on MDD because of its overwhelming impact on the health of
Americans, as noted by the NIMH:

6 Klein A



Major Depressive Disorder is the leading cause of disability in the U.S. for ages 15-44 (ww
w.who.int/healthinfo/global_burden_disease/GBD_report_2004update_AnnexA.pdf)

Major Depressive Disorder affects approximately 14.8 million American adults, or about
6.7% of the U.S. population age 18 and older (www.census.gov/popest/national/asrh).

Mindboggle features

Our  neuromarkers will  be  derived  from  an  analysis  of  features  extracted  with  the
Mindboggle  software  (www.mindboggle.info),  which  automates  anatomical  labeling  of
human  brain  MR  data.  The  original  version  was  created  by  the  P.I.  and  has  been
downloaded by users  in  over  20 countries.  Publications describing Mindboggle  (PMID:
15627570, 16202176) have been cited 37 times and downloaded many times (the latter
has  been accessed over  10,000 times  from Biomed Central’s  website;  they  state  that
“overall statistics indicate that your article will have been accessed on PubMed Central a
roughly equivalent number of times...”).

The  “Mindboggling  Shape  Analysis  and  Identification”  grant  (MH084029-03)  which
concludes  in  June  of  2012  is  currently  addressing  three  needs  of  the  neuroscience
community: (a) manually labeled, gold standard brain image data from many individuals,
(b) morphometric data to better understand variation of brain structures, and (c) accurate,
consistent, and efficient software for automated anatomical labeling of neuroimaging data,
in the form of new open source Mindboggle software. A Bayesian framework incorporates
the shape information from (b) applied to the labeled brain images from (a) as priors, so
that  each  application  of  Mindboggle  to  a  new  brain  image  uses  these  priors  in  its
anatomical feature matching and label assignment (Fig. 1).

We are currently extracting the following anatomical features from MRI data using our own
algorithms: sulcal pits [Im et al. 2011, Im et al. 2009, Lohmann et al. 2007], sulcal fundi
[Kao et al. 2007, Li et al. 2008], sulcal basins [Rettmann et al. 2002, Lohmann and Cramon
2000 ], and spectral decompositions of the cortical surface based on the Laplace-Beltrami
operator [Reuter et al. 2009]. We will compute shape analysis measures (curvature, depth,
area/volume,  etc.)  from  each  of  the  anatomical  features,  and  each  of  the  features  is
expected to  have clinical  relevance.  For  example,  sulcal  pits,  which are referred to  by
different names such as sulcal roots, buried or annectant gyrii, and plis de passage, are
particularly  interesting because they may be well  conserved structures formed early  in
development [Dubois et al. 2007, Lohmann et al. 2007,] and are recently being used to
characterize conditions such as polymicrogyria [Im et al. 2012.] Fundi run along the depths
of  the  folds,  and  like  pits  are  thought  to  characterize  early  stages  of  morphological
development  [Lohmann  et  al.  2007],  and  therefore  may  exhibit  abnormalities  in
neurodevelopmental and heritable disorders. Sulcal basins can be used to compute global
and local gyrification indices, which have been used to characterize schizophrenia [Cachia
et al. 2008], and early-onset vs. intermediate-onset bipolar disorder as well as bipolar and
unipolar depression [Penttilä et al. 2009, Mangin et al. 2010].
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Our features are nested as follows: sulcal pits (points) lie along sulcal fundus curves, which
lie along the depths of sulcal basins. Mindboggle stores the nested features as graphs in a
Neo4j database that uses a graph-based data model as opposed to a standard relational
database (Fig. 2). The primary advantage of nested, hierarchical features is that we can
prioritize (or weight) the influence of the features on comparison, matching, or diagnosis in

 

 

Figure 1. 

Mindboggle schematic

Figure 2. 

Schematic  of  Mindboggle’s  graph-based  database  of  anatomical  features.  Top:  different
structures  derived  from  brain  images:  surface  patches  fragmented  by  application  of  the
Laplace-Beltrami operator, sulcus folds and subfolds, and structures within a subfold. Bottom:
schematic graph diagrams representing the relationships among the nested structures. Bottom
right: examples of features as properties of edges (relationships such as Part of, Connected
to, Has label) and nodes (geometric, shape, and spectral measures).
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a level-sensitive manner. For example, if there were measurable differences between two
populations at the level of the sulcal pits vs. at the level of the sulcal basins, or at the level
of primary vs. secondary sulcal folds, this would inform us about how subtle or pathological
the differences are. We could also ascribe a level of confidence about the discriminability
between the two populations based on the variability of the features at a given level, and
perhaps even make inferences about the stage of morphological development when the
deviation took place. Finally, Mindboggle identifies corresponding features across brains by
quantifying features and collections of features using shape analysis measures. For each
cortical surface mesh vertex within a sulcal basin, fundus or pit, Mindboggle will compute
curvature, convexity, cortical thickness, and depth [Kao et al. 2007]; for basins and fundi,
spectral quantities using the Laplace-Beltrami operator [Reuter et al. 2009].

2 Innovation

•  We  will  introduce  a  completely  new  visualization  and  analysis  method  for  studying
individual and group brain anatomy and their variation.

• No one has ever used a network visualization approach to transform one individual’s brain
pattern into the pattern of another individual, to the best of our knowledge.

• Our approach focuses on individual variability by matching, quantifiying, and visualizing
an individual’s data without resorting to conventional template-based registration methods.

 
Figure 3. 

Example  of  natural  morphological  variability:  left  inferior  parietal  lobule  (IPL;  figure  from
[Kiriyama et al. 2009]). (A-D) are MRI data and (E-G) are post-mortem specimens. (A) IPL is
highlighted and folds are outlined.  (B,E) Typical  folding pattern.  (C,F) PreSMG pattern:  an
additional gyrus (ellipse) lies between postCS and SMG. (D,G) PreAG pattern: an additional
gyrus (ellipse) lies between SMG and AG. [SMG: supramarginal gyrus; AG: angular gyrus;
postCS:  postcentral  sulcus;  IPS:  intraparietal  sulcus;  Sy:  Sylvian  fissure,  STS:  superior
temporal sulcus; *sulcus intermedius primus] postCS IPS * * Sy STS IPL
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3 Approach

3.1 Specific Aim 1: Catalog variations of nested anatomical features

To catalog the most prominent variants of brain folding patterns in healthy and depressed
individuals,  we  will  use  the  Mindboggle  software  and  anatomical  database  under
development by the P.I.  to automate extraction and identification of  anatomical  features
such as sulcal fundi from hundreds of MRIs and depict each folding pattern as a graph.

We will  use Mindboggle’s entire database of anatomical features (Fig. 2) to catalog the
variations in the features across many brains. The database contains brains of healthy
individuals, so to study variations in individuals with MDD, we will process MDD data from
two  different  grants  for  which  our  Significant  Contributor  Ramin  Parsey,  a  leading
researcher  of  depression,  is  a  P.I.  (Arno  Klein  (P.I.)  is  also  a  Co-  Investigator  on  the
second). We will develop our methods on data from the first grant to determine the range of
variation of our features, and will validate on data from the second (U01) grant to try and
diagnose  individuals  with  MDD and  predict  treatment  outcome based  on  remitter/non-
remitter data. The U01 is a large, multi-site project acquiring multimodal brain imaging data
from  400  individuals,  specifically  designed  to  make  data  available  to  establish  MDD
biomarkers.

— “Biological Predictors of Response to Antidepressants” (MH074813)

— “Biosignature Discovery for Personalized Treatment of Depression”
(1U01MH092250-01)

3.2 Specific Aim 2: Tree diagram representation of brain patterns

To generate a visual representation of a single or multiple brain graphs (Aim 1) that can be
interpreted by a non-neuroscientist or clinician, we will automatically construct an intuitive
tree  diagram  that  will  enable  one  to  visually  pinpoint  differences  in  anatomy  across
individuals or groups of individuals.

We will  represent  a  given  brain’s  folding  pattern  by  a  hierarchical  graph  and  visually
represent this graph as a tree diagram. As a very simple example focusing on the exterior
of one region of the brain, in Fig. 4, we show three simple tree diagrams corresponding to
the three folding patterns in Fig. 3. The left two diagrams are distinguished by the presence
or absence of a single branch (red dots), indicating a transition point in the tree diagram
corresponding to a critical point in development (whether or not the postCS connects with
the anterior end of the IPS). This critical node in the tree diagram can be removed to map
the typical folding pattern (left) to the PreSMG pattern (middle). Likewise, the addition of a
single  node  to  the  leftmost  diagram  will  produce the  rightmost  diagram.  To  compare
topologically different graphs, we will implement the basic transformations between graphs
that have been described in the context of constructing Reeb graphs [Kanonchayos et al.
2002].
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3.3 Specific Aim 3: Application to major depressive disorder data

To determine which features of a folding pattern act as diagnostic and predictive biomarkers
of  MDD,  we  will  visually  and  quantitatively  assess  differences  (Aim 2)  across  healthy,
remitter, and nonremitter MDD populations.

For this aim we will combine the different tree diagrams generated from all of the brain data
in the Mindboggle anatomical database (Fig. 2) as well as from all of our MDD data (3.1)
into a single, multi-brain tree diagram (Fig. 5 ).  Similar individuals are expected to have
similar trees, and it will be clearly apparent when two anatomies differ by differences in
their  schematic  representation.  For  example,  visually  comparing a  given sulcus in  100
brains is  untenable,  even if  it  has only  two subfolds.  But  if  one were to  schematically
represent that sulcus as a root node in a tree diagram with two branches representing the
two subfolds, then any deviations from this folding pattern would appear as extra or missing
branches in the tree diagram. If  one then arranged the 100 schematics as frames in a
movie or in a 3-D slice stack, one could very quickly see any differences among them. If a
portion of the frames or slice-stack were generated from healthy controls and the remaining
portion  from  populations  with  MDD,  then  this  visual  comparison  could  guide  one  to
structures implicated in the different conditions. We will build on top of Mindboggle’s web
browser-based webgl interface to include the individual and collective tree diagrams, and
interactive  selection  and  highlighting  of  branches  and  branch  points  to  reference  the
corresponding  individual  brains  and  populations  of  brains.  By  enabling  researchers  to
visually explore and assess brain folding variation across individuals in an elegant and
efficient  interactive  software interface,  we will  provide a  means of  finding brain  folding
biomarkers of depression. We will measure success by diagnostic and prognostic accuracy

a b

c

Figure 4. 

These three diagrams correspond to the three folding patterns in Fig. 3 (left to right): typical,
PreSMG,  and PreAG.  Red dots  indicate  a  critical  node that  distinguishes  the  typical  and
PreSMG folding patterns.
a: Folding pattern 1.
b: Folding pattern 2.
c: Folding pattern 3.
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compared  with  gold  standard  psychiatric  evaluations.  If  the  diagnosis  and  prediction
attempts fail, our alternatives would include applying our methods to other clinical data and
to simulated data (to evaluate sensitivity and robustness under controlled conditions).

Project

We  will  analyze  variations  in  brain  anatomy  and  create  the  first  integrated  software
environment to extract patterns from brains and target differences related to inter-individual
variability,  pathology,  development,  or  degeneration.  We  will  evaluate  how  well  these
differences can help diagnose and predict treatment outcome for major depressive disorder
(MDD), which affects millions of Americans, but our work is intended to be applied to any
mental illness, such as Alzheimer’s disease, bipolar disorder, schizophrenia – indeed to
analyze differences in brain anatomy between any two populations. The specific aims of
this proposal are as follows:

Aim 1:  To catalog the most prominent variants of  brain folding patterns in healthy and
depressed  individuals,  we  will  use  the  Mindboggle  software  and  anatomical  database
under  development  by  the  P.I.  to  automate  extraction  and  identification  of  anatomical
features such as sulcal fundi from hundreds of MRIs and depict each folding pattern as a
graph.

Aim 2: To generate a visual representation of a single or multiple brain graphs that can be
interpreted by a non-neuroscientist or clinician, we will automatically construct an intuitive
tree  diagram  that  will  enable  one  to  visually  pinpoint  differences  in  anatomy  across
individuals or groups of individuals.

 
Figure 5. 

Mindboggle features and schematic diagram
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Aim 3: To determine which features of a folding pattern act as diagnostic and predictive
biomarkers of MDD, we will visually and quantitatively assess differences across healthy,
remitter, and nonremitter MDD populations.

By enabling researchers to  explore and analyze brain  variation across individuals  in  a
coherent  and comprehensive software interface,  we will  enhance our  understanding of
brain variation and change and enrich our characterization of individual brain patterns, or
“neural signatures.” These signatures are intended to provide the biomarkers sought in our
pursuit of personalized medicine.

Call

NIH  PAR-09-219:  Exploratory  Innovations  in  Biomedical  Computational  Science  and
Technology (R21)

Hosting institution

Columbia University

Ethics and security

Protection of Human Subjects

This research is exempt by Exception 4.

All data to be analyzed in this proposal have already been acquired, and for the most part
are  freely  and publicly  available  for  distribution and data analysis  (OASIS brain  image
repository). Data will be stripped of all identifying information before they are sent to the
investigators.  Data  were  acquired  from  a  wide  range  of  subjects  representing  broad
demographics with respect to age, gender,  race, etc.  (including minorities).  The OASIS
dataset consists of a cross-sectional collection of 416 subjects covering the adult life span
aged 18 to 96 including individuals with early-stage Alzheimer’s Disease (AD).
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