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Executive summary

The proposed research develops new computational tools to identify, diagnose, and predict
treatment  response  for  different  mental  illnesses.  The  research  will  first  be  applied  to
publicly  available  resting  state  fMRI  BOLD  data  from  patients  with  attentiondeficit
hyperactivity disorder and autism. It will also be applied to existing clinical and biological
data concerning suicidality in the context of major depressive disorder. These disorders
affect millions of Americans, but these tools can be applied to any mental illness, such as
Alzheimer’s  disease,  bipolar  disorder,  schizophrenia – indeed to  analyze differences in
brain, clinical, and biological data between any two populations.
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Research & Related Other Project Information

Project Decsription

There is a serious need for biomarkers to help understand, identify, diagnose and tailor
treatment  of  psychiatric  illnesses.  Biomarkers  could  involve  patterns  of  statistical
dependence  among  many  variables,  but  describing  high-order  dependence  in  many
variables  is  a  significant  challenge.  We  propose  to  further  develop  and  apply  a  new
method, “concurrence topology”, to large psychiatric data sets with the aim of identifying
biomarkers  related  to  diagnosis,  symptom  clusters  across  diagnoses  and  treatment
response rates by pursuing the following aims.

1. To identify biomarkers related to diagnosis we will  use concurrence topology for
studying high-order functional connectivity in large, existing resting-state fMRI data
sets.

2. To aid in classification models when there are more than just a few variables, we
will develop and apply concurrence topology to identify interactions, especially high-
order  interactions  in  related  to  diagnosis  or  to  components  of  psychopathology
shared across diagnostic boundaries like stress response or aggressive impulsive
traits,  in  existing  psychiatric  clinical,  structural  MRI,  and  other  biological  data
available in the PIs' institutions. These interactions might be useful biomarkers for
disease.

3. Concurrence topology can be very demanding computationally. To extend its reach
as a tool for studying high-order dependence, concurrently with work on Aims 1 and
2 and in support of those Aims, we will rewrite our concurrence topology software to
greatly increase its computing speed. We will also make it easier to maintain and
easier to use by the general scientific community.

Facilities & Other Resources

Stony Brook University (SBU) and Stony Brook University Medical Center (SBUMC) 

The integration of three institutions - Stony Brook University Medical Center, Stony Brook
University and Stony Brook Research Foundation - provides the Department of Psychiatry
and  Behavioral  Science  with  ample  educational  and  institutional  resources.  These
resources reside either at the medical campus, where Dr. Klein is located, or on SBU’s
main campus, accessible by a 10-minute walk. Dr. Klein engages in collaborative research
with  faculty  in  the  Computer  Science  Department  and  holds  weekly  meetings  in  the
Computer Science building.

Within  the  Health  Sciences  Center  and  the  surrounding  campus,  research  is  being
conducted  in  many  areas  of  psychiatry,  neurology,  and  biology,  allowing  Dr.  Klein  to
collaborate and consult with researchers with a broad scope of expertise. The targeted
symposia and Grand Rounds presented in Health Sciences Center will expose Dr. Klein to
a diverse array of outstanding psychiatric research.
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The Department of Psychiatry and Behavioral Science is ideally situated to take advantage
of this wealth of combined resources for training and career development of junior faculty.
In addition  to  the  department’s  affiliation  to  Stony Brook University  Hospital,  there  are
affiliated clinical and teaching programs and Eastern Long Island Hospital in Greenport, the
Northport  Veteran's  Hospital,  and  Nassau  University  Hospital,  providing  further
opportunities  for  research  collaboration.  The  Department  also  has  a  long  history  of
securing external funding. There are many active research projects funded by NIH, NIMH,
NIDA, NIAAA, and NCI. In addition, the department has multiple pharmaceutical industry
sponsored clinical trials.

As a member of the Department of Psychiatry, Dr. Klein has access to all journal clubs and
targeted symposia, in addition to the mentorship and resources of Dr. Parsey, the Chair of
the Department of Psychiatry and Behavioral Science, who has been a collaborator with
Dr. Klein on previous NIH-funded grants. The Department of Psychiatry and Behavioral
Science  provides  a  number  of  high  quality  clinical  programs,  a  psychiatry  residency
program  and  accredited  fellowships  in  child  and  geriatric  psychiatry  and  an  array  of
sponsored research activities. At present there are approximately 45 full-time faculty and
numerous voluntary faculty who participate in supervision and training of students. The
department also provides administrative and clerical support.

Computing resources 

It is important that Dr. Klein has adequate access to a powerful computer cluster to run
distributed software processes, including preprocessing workflows, Mindboggle software,
and the (currently) computationally intensive concurrence topology software on thousands
of brain images. This is provided in the form of a 128- core cluster that Dr. Klein maintains
at  Stony  Brook  University.  In  addition,  both  the  Psychiatry  and  Behavioral  Science
Department and the imaging group have dedicated IT professionals, located on the same
floor as Dr. Klein, in case computer support is needed.

Office 

Dr. Klein’s office is located on the 10th Floor of the Health Sciences Center on the Stony
Brook University Medical Campus. This building is connected to the Stony Brook University
Hospital and within walking distance of the Stony Brook main campus.

SUBCONTRACT RESOURCES 

Columbia University and Columbia University Medical Center (CUMC) 

Columbia University was founded in 1754 by the royal grant of George II of England and its
purpose was for the instruction of youth in the Learned Languages, and the Liberal Arts
and Sciences. A medical faculty was organized in 1767, and was the first institution in the
North American Colonies to bestow the degree of Doctor of Medicine. In 1814, Columbia
College merged with  the College of  Physicians and Surgeons,  which had obtained an
independent charter in 1807. Its use was primarily for servicing the Presbyterian populace.
However,  it  soon  began  welcoming  everyone  and  became,  as  noted  on  a  tablet  that
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remains on the hospital today, "For the Poor of New York without Regard to Race, Creed,
or Color." An agreement was signed in 1911, between Columbia University the College of
Physicians  and  Surgeons  and  Presbyterian  Hospital.  Finally  in  1928,  the  Columbia-
Presbyterian Medical Center opened up for operation in the Washington Heights section of
Manhattan.

Since that time, Columbia University Medical Center has experienced phenomenal growth
and development and is now situated on a 20 acre campus and makes up almost half of
the close to $2 billion budget of Columbia University. Columbia University Medical Center
provides international leadership in basic, preclinical, and clinical research, in medical and
health sciences education, and in patient care. The medical center trains future leaders
and includes the dedicated work of many physicians, scientists, public health professionals,
dentists, and nurses at the College of Physicians and Surgeons, the Mailman School of
Public  Health,  the  College  of  Dental  Medicine,  the  School  of  Nursing,  the  biomedical
departments of the Graduate School of Arts and Sciences, and allied research centers and
institutions.  Columbia  University  Medical  Center  is  home  to  Columbia’s  College  of
Physicians & Surgeons, which is among the most selective medical schools in the country,
and the largest medical  research enterprise in New York and one of the largest in the
United States. It currently boasts some 13 Howard Hughes Medical Institute investigators,
47 members of the Institute of Medicine, 26 members of the American Academy of Arts
and  Sciences,  and  16  Nobel  laureates  in  Medicine  or  Physiology  –  two  of  which  are
presently on staff. For more information, please visit www.cumc.columbia.edu.

The New York State Psychiatric Institute (NYSPI) 

Formerly the Pathological Institute, the New York State Psychiatric Institute was founded in
1896  and  began  its  affiliation  with  the  Columbia  University  College  of  Physicians  &
Surgeons in 1925. It has since then grown into a pioneering world-renowned facility for the
advancements in mental  health research and hygiene. The New York State Psychiatric
Institute  (NYSPI)  has  as  its  mission  “the search  for  knowledge  about  the  causes,
prevention, and treatment of mental illness.” It is a vibrant department and is chaired by Dr.
Jeffrey Lieberman, an international expert in the area of schizophrenia treatment. 

Laboratories are located in the north part  of  the building and space for  inpatient  care,
outpatient clinics, and education is in the south part of the building. Two enclosed bridges
connect the new building to the Kolb Annex and the Milstein Hospital Building. In 1985 the
Lawrence C. Kolb Research Annex was added to the original facility, which has 50,000
square feet  of  laboratory space plus the clinical  research units described above,  office
library, and other areas designed for its functioning as a hospital. The Annex also contains
the  Howard  Hughes  Institute  supporting  Nobel  Laureate  Dr.  Eric  Kandel  and  affiliated
investigators. This state supported facility is on the campus of the CUMC and has been
one of the leading institutions for psychiatric research for over 100 years. Its resources,
research faculty and staff,  combined with those of the Research Foundation for Mental
Hygiene at NYSPI and Columbia University Department of Psychiatry, have made it one of
the nation’s foremost psychiatric research centers.
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Clinical, laboratory, and support facilities 

The New York State Psychiatric Institute’s newest building was dedicated in May of 1997
and is now known as the Pardes Building. This 6-story building contains approximately
330,000  sq  ft  of  state-of-the-art  laboratory,  clinical  research  and  educational  facilities,
including the inpatient research units and outpatient clinics that are heavily utilized by the
fellows and mentors in this program. Trainees also have access to a host of laboratories
and clinical facilities at CUMC and NYPH, especially the structural and functional imaging
resources in the Department of Radiology, the Irving Center for Clinical Research (GCRC)
and the Center for Neurobiology and Behavior, which are all in nearby buildings. Trainees
have full access to an excellent library, computer facilities, photocopying, and the animal
care facilities in the Kolb Annex building and elsewhere at CUMC.

The Department of Psychiatry/Division of Molecular Imaging and Neuropathology (MIND)
at Columbia University/NYSPI comprises several components: wet laboratories including
biochemistry,  neurophysiology,  molecular  biology,  pharmacology,  neurohistology and an
image analysis facility for quantitative autoradiography and quantitative morphometry. The
MIND division has clinical office space for screening, evaluation, and treatment of study
participants. We also have a bank of -80°C freezers for storage of samples. The MIND
Computer  Center  is  equipped  with  several  multi-core  Apple  PowerMac  and  MacPro
workstations  running  Mac  OS  X  10.5  and  10.6.  The  lab  is  networked  via  1000Mbps
(gigabit) copper Ethernet and CISCO Catalyst switches. The workstations connect to a Dell
Poweredge 6600 computational server with four Intel Xeon MP 2.50GHz CPUs and 24GB
of RAM running RedHat Enterprise Linux 3. This server also provides a collection of web
applications  built  using  a  MySQL  database,  the  lighttpd  web  server  and  the  Django
framework.  The  workstations  also  connect  to  a  multiprocessing  computational  cluster,
comprised of  48  Apple  XServe G5 nodes each with  2  2.3GHz CPUs and 4GB RAM,
running Mac OS 10.4 and the Matlab Distributed Computing Engine as the job manager.
The head node of the cluster also provides NTP and DNS services to both the workstations
and  the  other  servers.  A  subset  of  the  workstations  also  forms  a  second  small
multiprocessing cluster,  running both the Matlab Distributed Computing Engine and the
Sun Grid Engine depending on the needs. The primary storage is formed by a Sun Fire
X4500, containing 48 500-Gb SATA drives and using the ZFS filesystem for a total storage
space of 20TB. This storage area is shared over NFS. A second, smaller file server is
formed by an Apple XServe G5 containing two mirrored SATA drives. This server shares
files over SMB, AFP and HTTP. The whole storage area is backed up over the network by
an  independent  Linux  box  and  stored  on  a  linear  SATA  disk  array.  Printers  include  a
Samsung color laser printer and several high capacity HP black and white printers. The
facility also hosts 2 40U cabinets powered with 4 3phase 20Amp circuits to which they are
backed up by a generator.
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Office 

Dr. Ellis, the Co-Principal Investigator, has an office on the second floor of the New York
State Psychiatric Institute on the Columbia University Medical Campus. He programs in R
on a MacIntosh Pro desktop computer.

Specific research plan

Specific aims

A  major  research  priority  in  medicine  and  psychiatry  is  the  search  for  biomarkers  to
diagnose neuropsychiatric illnesses, characterize symptom clusters across diagnoses and
predict  treatment  response  (Insel  and  Cuthbert,  2009).  Understanding  interactions
involving variables such as age, gender, clinical status, drug tolerance, and treatment, i.e.,
biomarkers involving patterns of statistical dependence among multiple variables, can be
critical for patients’ outcome and survival. For k=2,3,..., define “kth-order dependence” to
be  that  which  can  be  discerned  in  groups  of  k  variables,  but  no  fewer.  Principal
components  analysis  and  many  other  standard  multivariate  statistical  procedures  only
describe dependence of order 2.  But dependence of order greater than 2 (“high-order”
dependence) can be important.

Statistical dependence can be studied with regression-type or structural equation modeling,
but  the  biological  relationships  that  underlie  these  models  are  not  always  understood.
Another approach is to conduct “agnostic” analyses that make few assumptions and treat
all variables the same a priori. Regression analysis, for example, is not agnostic because it
requires designating some variables as responses and others as predictors. A challenge
for  extracting meaningful  biomarkers is  to  agnostically  describe high-order  dependence
among many variables in an interpretable fashion.

We have developed a new statistical method, "concurrence topology", that can be used to
succinctly describe high-order dependence in dozens of variables in an agnostic fashion.
Concurrence topology represents  multivariate  data  as a  series  of  abstract  shapes and
describes the topology of those shapes. We have applied it in a preliminary analysis (article
under  review)  to  find differences in  high-order  functional  connectivity  in  samples of  25
attention deficit hyperactivity disorder (ADHD) subjects and 41 controls. Using concurrence
topology, we found numerous differences in high-order dependence structure in the two
groups, including a robust difference in 6th-order dependence in individual subject’s fMRI
data, and even evidence of a difference in 7th-order dependence. This feat is difficult, if not
impossible, with other statistical methods because a naive, but agnostic, approach would
likely attempt to summarize all 3,365,856 different groups of seven brain regions among 32
regions. Instead of looking at the 3,365,856 trees, concurrence topology finds patterns in
the forest. But for limits in computing speed, we could have investigated even higher orders
of dependence (Aim 3).
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We  are  proposing  to  use  concurrence  topology  to  obtain  descriptions  of  high-order
dependence to help identify novel biomarkers, by pursuing the following aims:

• Aim  1. To  uncover  high-order  functional  connectivity  biomarkers  in  individual
subject data, we will first confirm and extend our brain imaging findings in the much
larger ADHD-200 fMRI data set (776 subjects), and second, apply our method to
the  ABIDE  autism  spectrum disorder  (ASD)  resting-state  fMRI  data  set  (1,110
subjects). We will use concurrence topology to classify individuals by diagnosis and
even subtype. The large sample sizes will allow cross-validation to reduce the false
positive rate.

• Aim 2. To find biomarkers involving non-time series and non-imaging data based
on group-level patterns of high-order dependence, we will first refine our method for
doing this and then apply it to dozens of variables from different domains. These
variables include clinical, demographic, behavioral, questionnaire, genotype, etc. in
pre-existing  data  to  look  for  diagnostic  biomarkers  for  ADHD,  ASD,  suicidal
behavior, and treatment response in major depressive disorder. Again, large sample
sizes will permit cross-validation.

• Aim  3. To  apply  concurrence  topology  with  more  variables  (regions,  in  fMRI
applications), more fMRI subjects, and to examine higher levels of dependence, we
will, concurrently with and in support of Aims 1 and 2, rewrite our software to make
it  faster  and  easier  to  read  and  maintain  for  wider  adoption  by  the  scientific
community.

The above Aims permit us to further develop and apply our new statistical approach to
extract  biomarkers as patterns of  high-order  dependence in  neuropsychiatric  data.  Our
long-term  goal  is  to  uncover  the  biological  relationships  that  underlie  the  patterns  of
dependence  we  find  with  concurrence  topology  to  improve  our  understanding  of  the
pathophysiology in these and other neuropsychiatric illnesses.

Research strategy

1. Significance 

1.1. Meeting the challenge of biomarker discovery 

Diagnosis  of  mental  disorders  suffers  from a  dearth  of  reliable  biomarkers  [Insel  and
Cuthbert 2009]. The importance of identifying biomarkers for mental disorders is reflected
by its inclusion in the National Institute of Mental Health’s Strategic Objectives (Strategy
1.3): “Currently, very few biomarkers have been identified for mental disorders due in part
to their complexity and an incomplete understanding of the neurobiological basis of mental
disorders...” Examples of disorders in need of biomarkers are attention deficit hyperactivity
disorder (ADHD), autism spectrum disorder (ASD), major depressive disorder (MDD), and
suicidal behavior. 

ADHD "affects at least 5-10% of school-age children and is associated with substantial
lifelong impairment, with annual direct costs exceeding $36 billion/year in the US. Despite a
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voluminous empirical literature, the scientific community remains without a comprehensive
model of the pathophysiology of ADHD. Further, the clinical community remains without
objective biological tools capable of informing the diagnosis of ADHD for an individual or
guiding  clinicians  in  their  decision-making regarding  treatment."  (http://
fcon_1000.projects.nitrc.org/indi/adhd200/) 

ASD "are now recognized to occur in more than 1% of children, causing immense suffering
to individuals and their families." (http://fcon_1000.projects.nitrc.org/indi/abide/)

MDD has an overwhelming impact on the health of Americans, as noted by the NIMH (htt
p://www.nimh.nih.gov/health/publications/the-numbers-count-mental-disorders-in-america/
index.shtml).  It  is the leading cause of disability in the U.S. for ages 15-44 and affects
approximately 14.8 million American adults, or about 6.7 percent of the U.S. population age
18  and  older  in  a  given  year  (http://www.who.int/healthinfo/global_burden_disease/
GBD_report_2004update_AnnexA.pdf, http://www.census.gov/popest/national/asrh/).

Suicide is  the eleventh  leading cause of  death  in  the United States  with  over  30,000
individuals committing suicide per year [CDCP 2010], making suicide a significant public
health concern. A recent National Institute of Mental Health (NIMH) initiative underscores
the need for further research on how to reduce the suicide rate [Insel 2010]. There are
currently no biological markers that are being used to identify those at risk. 

We attribute the elusiveness of biomarkers partly to the fact that traditional methods used
to analyze neuropsychiatric data do not adequately reflect their complexity. The Research
Domain Criteria project (RDoC) of the NIMH encourages investigation of “functioning ...
across multiple units of analysis, from genes to neural circuits to behaviors, cutting across
disorders  as  traditionally  defined.”  This  is  facilitated  by  statistical  analysis  of  variables
across several domains at once. This cannot be done with just a handful of variables. 

In the proposed research we will  further develop and apply a new statistical method to
capture this complexity in functional connectivity data [Heuvel and Pol 2010] (Aim 1) and
data from multiple non-time series data sources (Aim 2)  to help identify  biomarkers of
neuropsychiatric illnesses, specifically related to ADHD, ASD, and suicidal behavior. We
will  also  make  our  software  fast  and  in  accord  with  modern  open  source,  distributed
software practices for ease of use by the scientific community (Aim 3).

1.2. Taking advantage of large data sources for extracting biomarkers 

Advances in neuroimaging brain activity have opened up tremendous stores of rich data
from which biomarkers may be drawn (see sections 3.5.1 and 3.5.2 for descriptions of the
data we will  use).  An important  aspect  of  brain  activity  is  the interaction among brain
regions. This interaction is reflected in “functional connectivity” in neuroimaging time series,
which is “statistical dependencies between spatially segregated neuronal events” [Stephan
and Friston 2010]. For concreteness we discuss functional connectivity in the context of
blood oxygenated level-dependent (BOLD) functional magnetic resonance imaging (fMRI,
[Heuvel and Pol 2010, Jezzard et al. 2002]) with the understanding that our methods apply
to general multivariate time series. Moreover, we consider the problem of describing or
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summarizing the functional connectivity in the fMRI of an individual person. This is the level
of statistics with which Aim 1 is concerned.

Functional neuroimaging data alone tell  only a part of the story about the health of an
individual. Phenotypic data (and non-time series imaging data) of many kinds are routinely
acquired from patients  and should  be included in  a  search for  biomarkers  of  complex
neuropsychiatric illnesses. Aim 2, consistent with RDoC, is concerned with describing or
summarizing data from multiple sources (3.5.2), not simply functional connectivity times
series brain imaging data. (However, summaries from analyses performed under Aim 1 can
serve  as  inputs  to  the  sorts  of  analyses  of  Aim 2.)  The  method with  which  Aim 2  is
concerned  starts  with  group-level  statistics  and  translates  them  into  the  level  of  the
individual.

Our longterm goal is to use these functional connectivity and multiple-source biomarkers to
gain insight into the pathophysiology of mental illnesses for prediction of disease course
and treatment response in individual patients to better personalize treatment accordingly.

1.3. Overcoming problems with current approaches for extracting biomarkers 

Individual variables might serve as biomarkers. Many statistical methods can help identify
such variables. But patterns of the joint distribution of variables (i.e., the form of statistical
dependence) might also serve as biomarkers. One way to study these patterns is to specify
a regression, classifier, or structural equation model involving only a few variables. (We
lump these methods together under the generic term “model”.)

Dependence structure often has an “order”: If a feature of the joint distribution of variables
can be detected by looking at k variables at a time, but not by looking only at k−1 variables
at  a  time,  then  that  feature  reflects  “kth-order  dependence”  among  the  variables.  For
example,  traditional  cluster  analysis  of  variables,  (Pearson,  Kendall,  and  Spearman)
correlation,  factor  analysis  (including  principal  components  analysis),  and  linear
discriminant analysis are measures of 2nd-order dependence because those analyses can
all be carried out by looking at the variables two at a time. “High-order” dependence is
dependence of  order at  least  three.  A model  including interactions registers high-order
dependence.

However,  one might  not  wish  to  posit  such  a  specific  model,  but  instead  proceed
“agnostically”. Data analysis is “agnostic” if, a priori, all variables are treated the same (for k
= 1, 2, 3,... all groups of k variables are treated the same) and few a priori assumptions are
made about the nature of the joint distribution. The aforementioned cluster, correlation, etc.
analysis methods are all agnostic.

If  there are many variables it  is  difficult  to  capture high-order  dependence agnostically
using a model. In general, in agnostically analyzing increasingly high orders of dependence
in large numbers of variables one must overcome a “combinatorial explosion”. Agnostically
studying kth-order dependence means looking for a pattern in all “k-tuples” of variables,
i.e., all groups of k variables, of which there can be very many. In our preliminary fMRI
analyses  (3.4.1)  we  examined  2nd-  (2,701  pairs),  3rd-  (64,824  triplets),  and  4th-order
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dependence  (1,150,626  quadruplets)  in  74  variables.  We  also  looked  at  7th-order
dependence in 32 variables (Example 1). That analysis involves 3,365,856 septuplets. So
on the face of it  if  one wished to study 7th-order dependence among 32 variables one
would have to make sense of 3,365,856 numbers.

Statistical  methods such as independent  components  analysis  [Hyvarinen et  al.  2001],
generalizations  of  factor  analysis  [Burdick  1995],  and “boosting”  and  “kernel-based”
methods [Hastie et al. 2001] in machine learning can capture high-order dependence in an
implicit  manner,  but  for  purposes  of  interpretation  or  explanation  a  more  explicit
presentation is desired. Current methods that can be more explicit are limited in how high
an  order  of  dependence  they  can  describe.  Examples  are  latent  variable  methods
[Bartholomew et al. 2011] and perhaps the method of [Dunson and Xing 2009]. The “lasso”
[Hastie et al. 2001] is a regression method that can accommodate a large number of terms
in the model and at the same time selects terms, but will not scale to tens of thousands or
millions of possible interaction terms.

1.4. Concurrence topology 

In this proposal, we discuss a new method, “concurrence topology”, that makes remarkable
headway in overcoming the combinatorial explosion without the drawbacks of the above-
mentioned statistical methods. The paper by Ellis and Klein [Ellis and Klein 2012] (under
review by a statistics journal) gives an introductory account. Concurrence topology makes
use of ideas from the mathematical field of algebraic topology [Munkres 1984]. (Topologist
Prof.  Steven Ferry at  Rutgers University  has agreed to serve as an unpaid consultant
providing support in the area of topological theory.) Our work was inspired by [Curto and
Itskov  2008],  which  applied  topological  methods  to  analyze  the  firing  of  simulated  rat
hippocampal place cells.

Concurrence  topology  is  used  on  dichotomized  data.  It  works  by  describing  kth-order
dependence,  not  directly  in  terms  of  k-tuples,  but  in  terms  of  larger  structures  called
“homology classes”. Concurrence topology begins by representing multivariate data as a
series of abstract shapes. Homology classes are just holes in the shapes and represent
what might be thought of as inhibitory relationships. Cluster analysis can be used to study
the dependence among variables. Viewing cluster analysis as a method for finding, not
clusters, but gaps between clusters, concurrence topology can be thought of as “cluster
analysis on steroids.” One advantage of concurrence topology is that it radically reduces
the size of the selection problem from selecting from thousands or millions of k-tuples to
selecting from a few dozen (usually fewer) homology classes. This gives one a reasonable
chance at managing the multiple comparisons problem.

Concurrence topology can reveal  complex relationships within dozens (but  not  100s or
1,000s) of variables. Hence, it can draw connections among multiple domains (e.g., genes,
circuits, behavior). Another advantage is that, in principle, concurrence topology can be
used to investigate dependence of any order. (The obstacle is computational, addressed in
Aim  3.)  Concurrence  topology  is  also  explicit:  homology  classes  are  associated  with
specific orders of dependence and can be “localized” (3.3) to reveal specific groups of
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variables most closely associated with them. Since concurrence topology can be computed
from time series data from just one subject (Aim 1), summaries of patient concurrence
topology  could  potentially  be  used  for  diagnostic  purposes.  In  the  sort  of  analyses
proposed  under  Aim  2,  group-level  descriptions  of  dependence  are  translated  into
individual-level interaction variables that can again be used for diagnosis.

2. Innovation 

This proposal is innovative with regard to the methods we are developing, the domain to
which we are applying them, and to the results we are seeking.

Methods:  Concurrence  topology  is  a  new  approach  to  multivariate  data  analysis  that
applies algebraic topology to statistics and is radically different from other currently used
statistical methods. Not only does it  more succinctly summarize high-order dependence
than most conventional agnostic statistical methods do, but concurrence topology captures
very  different  aspects  of  high-order  dependence  and  therefore  complements  other
approaches.  (But  we  apply  conventional  statistical  methods  to  concurrence  topology
output; 3.4.)

Domain and results: We apply topology for the first time to resting state fMRI (functional
connectivity)  data  and  to  non-imaging  phenotypic  neuropsychiatric  variables  and  use
topology for the first time to extract biomarkers of neuropsychiatric illnesses.

3. Approach 

3.1. MRI data processing 

PI Dr. Klein is involved in the development of state-of-the-art software workflows for MRI
data processing (article under preparation; https://github.com/INCF/BrainImagingPipelines)
and is the main developer of the Mindboggle software package (http://mindboggle.info) that
automates  cortical  labeling  (Fig.  1),  feature  extraction  [Klein  et  al.  2011c],  and  shape
analysis  [Klein  et  al.  2011b,  Lee  and  Klein  2011,  Klein  et  al.  2011a],  (articles  in
preparation). For the label definitions used by Mindboggle, Dr. Klein helped to create the Mi
ndboggle-101  dataset,  the  largest  and  most  complete  set  of  free,  publicly  accessible,
manually labeled human brain images in the world, labeled with the new “Desikan-Killiany-
Tourville” (DKT) cortical labeling protocol that improves the accuracy of labeling cortical
areas [Klein and Tourville 2012]. Further, he constructed a single “Gaussian classifier atlas”
from 40 of the manually labeled brains (DTK40 atlas) and found that use of this atlas led to
higher automated labeling accuracy than combining the registration results from the same
number of  individual  atlases [Klein and Tourville 2012].  We will  use the MRI and fMRI
workflows and the Mindboggle's region labeling (with the DKT40 atlas) to preprocess our
structural and functional data for use by our concurrence topology software.
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3.2. Persistent homology 

Concurrence topology describes high-order  dependence in  terms of  homology classes.
Selection of homology classes is based on their “persistence” [Edelsbrunner and Harer
2010]. Persistence assigns to homology classes times of “birth” and “death”. The difference
between birth and death is the “lifespan” of the homology class. The longer the lifespan of
a class, the more likely to be “real”, i.e., reproducible in other data sets, rather than being
merely the  product  of  sampling  fluctuations.  We  can  create  a  “persistence  plot”  of
homology classes of a given order of dependence for a data set by plotting death vs. birth
for all the homology classes of that order in the series of shapes. In a persistence plot each
point represents a persistent class and the distance from the point up to the diagonal x=y is
the  lifespan  of  the  class.  Fig.  2  is  an  example  that  portrays  third-  and  higher-order
dependence.

 

 

Figure 1. 

Brain  labeling  protocol  (left,  on  an  inflated  cortex)  and  cortical  labels  (right)  used  by
Mindboggle for extracting regions analyzed by our concurrence topology software.

Figure 2. 

Persistence plot showing third- and higher-order dependence in the fMRI BOLD data from an
individual control subject (as in Aim 1). The larger disk indicates two coinciding points. The
point with the asterisk is discussed in 3.4.1, Example 2.
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3.3. Localization 

Often  researchers  will  want  detailed  information  concerning  high-order  dependence  in
order to gain understanding of  a disease process. Concurrence topology can tell  more
about  a  persistent  homology  class  than just  what  is  revealed  in  a  persistence plot.  A
homology class involves all variables, but some variables are involved more directly than
others. For purposes of interpretation (and for finding interactions, 3.4.2) it is important to
find  the  variables  directly  involved  in  persistent  classes,  at  least  for  those  with  long
lifespans. These can be found as members of “short cycles”. A “cycle” is a structure in the
data that wraps around the hole (or holes) represented by the homology class. A cycle
belonging to a homology class representing kth- and higher-order dependence can involve
no fewer than than k variables. Those involving only k variables are “short cycles.” Such
short cycles are those most intimately associated with the corresponding hole and capture
dependence of order exactly k. The process of finding short cycles is “localization”. See
3.4.1 (Example 2) and

3.4.2 for applications of localization. 

3.4. Preliminary results 

3.4.1. fMRI data analyses 

Most of our effort in using concurrence topology has been in applying it to resting state
fMRI blood oxygenated-level dependent (BOLD) data [Ellis and Klein 2012]. The fMRI data
set was generated at New York University and distributed as part of the 1000 Functional
Connectomes projects. This data set includes 41 healthy controls and 25 adults diagnosed
with ADHD. We computed BOLD values for 92 regions (whole brain), including 40 in the
"default mode network" (DMN, [Uddin et al. 2009]). We dropped regions that exhibited little
variability, leaving 74 whole-brain and 32 DMN regions. fMRI BOLD data are multivariate
time series, with one component per region.

We  applied  concurrence  topology  to  each  subject’s data  separately  and  computed
summaries  of  the  results.  Then  we  used  standard  statistical  methods  to  compare  the
subject-wise  concurrence  topology  summaries  between  the  two  groups.  Concurrence
topology can be applied to multivariate time series either in the time or Fourier domains
[Ellis  and  Klein  2012,  Brillinger  2001].  Our  analyses  were  exploratory  but  using
concurrence topology we found numerous statistically significant differences (not adjusted
for multiple comparisons) between the groups.

Example 1. Fewer ADHD subjects (64.0%) had any holes corresponding to dependence of
order six or higher in the time domain in the DMN than did controls (92.6%). Thus, the two
groups differ in their pattern of 6th-order dependence. There was a less robust finding of
the  same  sort  in  7th-order  dependence  (the  “7th-order  dependence  in  32  variables”
referred to in 1.3). We also found differences in the whole brain in the Fourier domain in
dependence orders 3 and 4.
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Example 2. The persistent class marked with an asterisk in Fig. 2 has a long lifespan. It
contains 16 short cycles and more than half the subjects in the data set have at least one
of them. Thus, most of the subjects share essentially the same homology class. These
similar classes in the data must reflect some population homology class and so warrant
further study. In fact, 76% of the ADHD subjects have at least one of the 16 short cycles,
but  only  44% of  the  controls  have  any.  Thus,  this  class  seems  related  to  the  ADHD
condition.

Being  able  to  agnostically  pinpoint  specific  triples  of  regions  that  discriminate  the  two
groups would be difficult with any other statistical method.

3.4.2. Interactions in logistic regression for identifying suicide attempters 

We used concurrence topology for interaction identification in Hamilton Depression Rating
Scale  (HDRS)  data  on  700  subjects  randomly  drawn  from  a  clinical  database  in  the
M.I.N.D. division of the New York State Psychiatric Institute (NYSPI), where PI Dr. Ellis
works.  Our  goal  was  to  use  the  HDRS items  (excluding  suicide  item)  to  discriminate
subjects with and without a history of suicide attempt. We further split the 700 subjects into
a “training”  and “testing”  sample.  Using concurrence topology we found in  the training
sample persistent  homology classes that  distinguished the two groups.  Examination of
these led to one 3rd-order interaction and three 2nd-order interactions.  We fitted lasso
[Hastie  et  al.  2001]  and  step-wise  logistic  regression  models  on  the  training  sample
including  the  dichotomized  items  as  main  effects  and  also  the  items  plus  the  three
interactions. The model that included the interactions we found using concurrence topology
did statistically significantly better in the test sample in recognizing subjects who had a
history of suicide attempt than did the models without the interactions.

3.5. Proposed work 

3.5.1. Individual functional connectivity data (Aim 1) 

We will first confirm and extend the our brain imaging findings in [Ellis and Klein 2012] in
the much larger ADHD-200 data set, and second, apply our method to the Autism Brain
Imaging Data Exchange (ABIDE) data set. The large sizes of these data sets will allow a
critical  cross-validation  test  of  the  discriminatory  power  of  the  concurrence  topology
method,  in  particular  for  discriminating  diagnostic  subtypes  (ADHD-combined  vs.
inattentive,  and  autism  vs.  Aspergers  vs.  pervasive  developmental  disorder).  The
ADHD-200  Sample  website  includes  the  description:  "776  resting-state  fMRI  and
anatomical datasets aggregated across 8 independent imaging sites, 491 of which were
obtained from typically developing individuals and 285 in children and adolescents with
ADHD (ages: 7-21 years old). Accompanying phenotypic information includes: diagnostic
status,  dimensional  ADHD symptom measures,  age, sex,  intelligence quotient  (IQ) and
lifetime  medication  status."  The  ABIDE  data  include  previously  collected  resting  state
functional magnetic resonance imaging data sets and phenotypic information from 539
individuals with ASD and 573 typical controls from 16 international sites.
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We also have functional connectivity brain imaging data from patients with MDD to which
we can apply our method to attempt to predict antidepressant treatment response. PI Dr.
Klein is a Co- Investigator on the “Biosignature Discovery for Personalized Treatment of
Depression” (1U01MH092250- 01), a large, multi-site project acquiring multimodal imaging
data from 400 individuals with MDD, specifically designed to make data available to find
biomarkers for MDD.

3.5.2. Non-temporal group data (Aim 2) 

We will  further  develop our  method to  first  detect  high-order  dependencies  in  multiple
sources of nontemporal, non-imaging data at the group level and then translate them into
individual  level  interaction  variables.  These  interaction  variables  can  be  included  in
classification modes such as logistic regression as described in 3.4.2. We will apply the
method to classify clinical subtypes of ADHD and of ASD by accompanying phenotypic
information  (symptom  measures,  lifetime  medication  status,  behavioral  measures,  IQ
scores, etc.) in the ADHD-200 and ABIDE data sets.

The M.I.N.D. division at NYSPI has large collections of clinical (over 1,500 subjects, over
4,000 variables), neuropsychological (over 500 subjects), genotype (almost 500 genotyped,
over  500  with  DNA  gene  chips),  postmortem  (autoradiograms  of  brains  of  over  250
subjects),  and structural  MRI (over 400) data pertaining to suicide and MDD. With the
guidance of Co-Investigator Dr. Mann we will use clinical and/or biological criteria to select
samples of subjects and up to 100 or so variables across several domains (as envisioned
by RDoC) for concurrence topology analysis. The database manager (TBH) will then put
together analytic data sets from the NYSPI databases.

3.5.3. Software development (Aim 3) 

PI Dr. Ellis has written a package of programs in the statistical programming R language (ht
tp://www.rproject.org) for  doing concurrence topology analysis.  Currently,  the amount of
computer time needed by concurrence topology varies greatly from data set to data set and
in extreme cases can require more than one week to analyze one data set. The probability
of having a long computation increases the more variables there are and especially with
order of  dependence being analyzed. To increase the computational  capabilities of  our
software, we propose to make the software run much faster. To do this, Dr. Ellis, assisted
by the programmer (TBH), will rewrite the most computationally intensive portions of the
software in a compiled language, such as C. Increasing computational speed will be one of
the first undertakings of the project because of its importance for further development of
the algorithms and their application to the large data sets described above. Some data
structures recur many times in our software. In order to improve maintainability of the code,
we will employ object-oriented programming [Abelson et al. 1984] to represent these data
structures as standardized objects. Dr. Ellis will rewrite the code in stages.

PI Dr. Klein has considerable programming experience, having developed the Mindboggle
software described above (3.1), and will be involved in the software engineering challenges
of  this  proposal,  ensuring  that  the  project  adopts  modern  practices  of  test-driven
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development and distributed version control  (hosted by http://github.com). In addition to
working from the current code base, he has some experience with and will further explore
the capabilities of the Dionysus software, a C++ library with Python bindings for computing
persistent homology developed by Dmitriy Morozov.

In addition to Dr. Morozov, Prof. Konstantin Mischaikow at Rutgers University, an expert on
computational topology, will serve as an unpaid consultant for the project.

3.6. Timeline 

Aim 1. We will spend the first year and a half seeing if our ADHD brain imaging findings
will replicate in the much larger ADHD-200 data set with 776 subjects, and applying our
method to find individual functional connectivity biomarkers in the ABIDE ASD data set with
1,110 subjects, as well as the MDD data set with 400 subjects. We will try to discriminate
between different subtypes of the disease using concurrence topology, and evaluate using
cross-validation.

Aim 2.  We will  run  analyses  for  identifying  non-time  series  group  data  biomarkers  to
diagnose subtypes of ADHD and ASD and predict treatment response in MDD and suicidal
behavior  (five  months  for  each  condition,  including  time  to  write,  submit,  and  revise
publications).  In  Year  2,  we will  include  in  the  ADHD and ASD analyses  subject-level
summaries of high-order dependence computed under Aim 1.

Aim 3. We will spend the first six months making the concurrence topology software faster,
and  in  the  following  year,  we  will  restructure  the  code  to  follow  an  object-oriented
framework that will help make the code base more concise and easier to maintain. We will
then write a paper describing and publicizing the software. During this period, we will also
determine which portions of the Dionysus computational homology software could be used
to advance our concurrence topology software, and if so, extend the Dionysus code base
to do concurrence topology in case we find it faster and more appropriate to develop with
this code base.

Resource sharing plan

Multiple Project Directors/Principal Investigators (Pds/PIs) Leadership Plan 

Rationale for the multiple Pis 

The  project  proposes  multiple  Principal  Investigators,  one  at  Stony  Brook  University
Medical Campus and the other at Columbia University Medical Campus, to capitalize on
the  specific  expertise  of  Dr.  Klein  and  Dr.  Ellis.  Because  it  proposes  to  develop
computational algebraic topological and statistical methods to establish biomarkers based
on region and feature extraction and processing from brain data, it  is essential to have
significant expertise in mathematics and statistics (Ellis) as well as expertise in brain image
processing  and region  and feature  extraction  (Klein).  Because of  this  clear  division  of
expertise,  they intend to  resolve conflicts  by deferring to  colleagues in  their  respective
fields. Dr. Klein will defer to the chair of his department, Dr. Parsey, and Dr. Ellis will defer
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to  Co-Investigator  Dr. J. John  Mann  and  consultants  Drs.  Mischaikow  and  Ferry.  For
several years Dr. Klein and Dr. Ellis have been exploring the use of concurrence topology in
brain imaging. They have written a paper on the subject which has been submitted to a
statistics journal. So it is natural that they team up to perform the work described in the
proposal.

Expertise of Principal Investigators 

Dr. Arno Klein is a Research Assistant Professor of Psychiatry and Behavioral Science at
Stony Brook University Medical Campus. Dr. Klein’s research focuses on brain imaging,
image processing, and information visualization. Dr. Klein received a B.S. In Biopsychology
from the University of Michigan in 1993, an M.S. In Media Arts and Sciences from M.I.T. In
1996, and a Ph.D. In Neuroscience from the Weill Medical College of Cornell University in
2004. Prior to his appointment at Columbia University,  Dr.  Klein worked as an imaging
research analyst  at  Columbia University,  and as an Information Synthesis Theorist  and
Program Analyst  specializing  in  complex  data  visualization  at  the  Parsons Institute  for
Information Mapping at the New School in New York. He is an expert in neuroinformatics
and has published the largest registration and brain extraction algorithm evaluation studies
ever conducted, and has recently led a group to create the world’s largest manually labeled
data set of brain images in the world [Klein and Tourville 2012; http://mindboggle.info/data]
as well as the largest shape analysis study ever conducted [article under preparation]. Dr.
Klein is also the P.I. And main developer of the new Mindboggle software to be used in this
project  for  automated brain  labeling.  Being  an  avid  programmer,  Dr.  Klein  will  actively
contribute  to  the  concurrence  topology  software  development  in  the  proposed  project.
Assisted by Dr.  Ellis,  Dr.  Klein will  use the software to apply the concurrence topology
method to  publicly available  brain  imaging data  (such as  the  Functional  Connectomes
1000,  ADHD200,  and ABIDE datasets).  Being an avid  programmer,  he will  be able  to
contribute to the software development of the project.

Dr.  Steven  Ellis  is  an  Associate  Professor  of  Clinical  Neurobiology  (in  Psychiatry)  at
Columbia University. Dr. Ellis will play a major role in planning analyses of within-subject
functional  connectivity.  His  primary  effort  will  be  to  (1)  apply  concurrence  topology  to
existing  large  clinical  and  biological  data  sets  available  in  the  Molecular  Imaging  and
Neuropathology Division in the New York State Psychiatric Institute at Columbia University
to discriminate clinical  populations (defined, for example, by diagnosis and/or treatment
response). He will also (2) further develop the concurrence topology software. Dr. Ellis’s
interests include topological aspects of multivariate data analysis. He also has a strong
interest  in  statistical  computing.  He  is  Director,  Statistics  and  Computing  Core,  Conte
Center for the Neuroscience of Mental Disorders (CCNMD): The Neurobiology of Suicidal
Behavior.  He  invented  the  concurrence  topology  method  and  wrote  software  for  its
implementation.
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Call

unsolicited R21 (2013)

Hosting institution

Stony Brook University

Ethics and security

Only publicly available data will be used.

Author contributions

AK and SE wrote this proposal in 2013.
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