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Abstract

The Code/Theory workshop explored the process of translating between theory and code,
from the perspective of those who do this work on a day to day basis. This report contains
individual contributions from participants reflecting on their own experiences, along with
summaries of their lightning talks and outputs from the discussion sessions. We conclude
that translating between theory and code successfully requires a diversity of roles, all of
which are central to the process of research.
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Introduction

On Monday  16th  January  2017  we  held  the  inaugural  Code/Theory  Workshop  at  the
University of Manchester.  The event brought together programmers and architects from
academia and industry to discuss the challenges of translating between 'theory' - scientific
or logical concepts - and 'code' - software, ontologies or linked data.

The aim was to capture the views and experiences of people dealing with these issues in
practical terms, to understand where the challenges lie, and how we can address them.
The discussion covered a broad range of topics, from low-level technical issues to high-
level communication. An overwhelming message was the importance of teamwork, and a
recognition  that  for  the  process  to  work  well,  the  environment  must  support  parity  of
esteem between programmers, researchers and domain experts.

The  workshop  started  with  each  participant  giving  a  lightning  talk  outlining  their
experiences in this area. This was followed by two discussion sessions in small groups:
"Why  is  code/theory  translation  challenging?"  and  "How  can  we  improve  code/theory
translation?". This report starts with personal contributions from all workshop participants,
describing their own view of code/theory translation. It then summarises the outputs of two
discussion sessions, focusing on why code/theory is challenging, and potential solutions to
these challenges. It concludes with a recommendation that to support the difficult process
of code/theory translation, promoting a culture where the contribution of all specialists are
recognised and valued is key.

Participant contributions

Each participant was asked to present a lightning talk about their experiences in this area,
which is summarised here. Participants were also invited to submit  an abstract  to give
further details of their thoughts on this topic; where this was provided, it is included below.

Jonathan Boyle

Jonathan is currently an HPC Application Analyst at The Numerical Algorithms Group and
has previously worked as a Research Software Engineer at the University of Manchester.
He has a PhD in experimental physics.

In his lightning talk, Jonathan described theory as collective knowledge, often contained
within  papers,  that  is  converted  into  personal  knowledge,  and  particularly  into
understanding, and then into code design (Suppl. material 1). This process can be hard
work, and the way in which it happens is not always obvious, and not well understood; it
occurs  at  both  a  conscious  and  unconscious  level,  involving  creativity  and  reflection.
Translating  theory  into  design  is  hard,  while  actually  writing  the  code  is  more
straightforward.  The  challenge  involved  in  translating  theory  to  code  also  varies
considerably, with different levels of complexity, and some implementations being much
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more straightforward than others. There are also social aspects to consider, as the process
requires teamwork and different sets of skills,  as well  as potentially having a variety of
goals and constraints. It is important to consider the context in which it is happening.

Abstract

In my experience the challenges associated with code/theory are similar in other domains,
for example, the challenges associated with good project management, team working, and
software engineering. Specific challenges involving theory tend to require converting theory
to design and data to theory via personal understanding, and in my experience acquiring
and applying understanding is a rather mysterious skill involving various processes within
the human mind e.g. learning, idea generation, reflecting, intuition and planning.

Despite these similarities, there are large variabilities within theories, codes and contexts,
where context includes the people and the project goals and constraints. Perhaps code/
theory is the wrong level of consideration, and the scope needs to be increased or reduced
accordingly to provide something more amenable to analysis.

Alan Davies

Alan Davies is a PhD candidate in Computer Science and a Research Assistant at the
University of Manchester. He has previously worked as a Software Engineer in industry,
and as a Cardiac Nurse.

Alan’s talk highlighted the difficulty of ‘data wrangling’ - while writing code itself may be
straightforward, working out how to subset, view and potentially reorganise the data, or
deciding how to deal with missing values, can be very difficult, and may affect the validity of
results. Automating this process can also take a lot of time, but is important for ensuring
reproducibility of results. Mapping the results from computational analysis back to theory is
particularly challenging. How can we determine how the results relate to the real world?
What can we learn from them? Finding a narrative that fits with established theory can be
difficult.

Chiara Del Vescovo

Chiara is currently a Data Analyst at the BBC, where her job is to manage the semantics of
programme metadata across the organisation. She also has industry experience as a Data
Architect and has a PhD in description logic and ontologies.

Chiara discussed the challenges of working with PIPS, a complex, centralised system that
connects  to  and  stores  data  from  other  systems  regarding  BBC  programmes  and
resources, and which both software processes and humans interact with (Suppl. material
2). Her work involves translating from PIPS (the code) to data semantics (the theory): PIPS
is considered a source of truth and influences how people understand the information that
it  contains. Although data would have semantics associated with it  when it  was initially
created in the system (theory to code), this often changes over time due to data being used
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in a different way to that originally intended, and the current state of the system informs or
provides a new view of how it should actually be considered (code to theory). Depending
on who is using PIPS, the semantics may change. A focus is abstracting and formalising
the semantics of the data and producing a representation that is common to everyone so
that all stakeholders talk the same language.

Nicolas Gruel

Nicolas has worked as a Research Software Engineer at the University of Sheffield and the
University  of  Manchester  (his  current  role).  He  has  a  PhD  in  Astrophysics  and  has
previously worked as both a theoretical and observational Astrophysicist and in the medical
domain.

Nicolas emphasised that when translating between theory and code, experimentation and
observation to test any resulting theory were paramount (Suppl. material 3). Validating in
silico models is difficult: nature is complex, and models are often too reductionist and do
not work in every situation. People sometimes have such faith in computational models that
they refuse to accept they are inaccurate, even when they are not supported by the data
(the implicit assumption is that the empirical data is wrong). Experimentation is expensive,
however, and there is optimism that in silico experimentation can replace in vitro or in vivo
work, even when the evidence suggests this is not the case.

An additional issue is that a great deal of research code (and in Nicolas’ experience, in
medicine)  is  of  poor  quality,  and very  inefficient.  To improve this,  we need to  improve
adoption of version control, documentation, QA and maintenance.

Abstract

Increase in computing power has made it  much easier to implement theory in code. In
silico science has now been introduced and is used in a wide range of disciplines, where
models are implemented through the use of software, itself often considered as a "black
box". The results of those models are then considered as truth. In this rapid adoption of the
in silico approach, a significant (and expensive) step is too often skipped: the validation of
the  models  in  the  real  world.  Models  are  a  simplification  of  a  real  process  and  their
numerical  implementation  can  only  introduce  more  approximation.  There  is  a  need  to
reintroduce critical experimentation to validate models and their implementations.

Anja Le Blanc

Anja  is  a  Research  Software  Engineer  and  Research  Applications Manager  who  has
worked across many domains, from modern dance to economics and heliophysics.

Anja described her experience working on two successful research software projects. The
first  was  a  software  tool  using  Access  Grid  technology  to  combine  multimedia  data
(images, movies, 3D projections) and modern choreography. This involved engaging with
dance students and dancers through workshops, in an iterative process, and ultimately
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publishing a paper about the work. The second project was an EU-funded project about
introducing workflow systems to heliophysics, which involved heliophysicists from across
Europe. Students were ultimately able to use the software to explore data in completely
new ways, enabling new science to be conducted.

Abstract

The choice of software engineering tools is very domain dependent and not necessarily
suitable for the task. When performing theory to code translation, the primary issues are
that boundary conditions are badly coded, testing is non-existent, and there is not much
software engineering. When translating code to theory, it  is important to check whether
code does what it says it does in all circumstances and to watch for assumptions (within
the code) that are not clearly stated.

David Mawdsley

David is currently a Research Software Engineer and Data Scientist at the University of
Manchester, where he is working on the automated behavioural coding of video data. He
has previously worked as an analyst at HEFCE, where he gained experience of translating
funding  models  to  code.  More  recently  he  was  a  postdoc  at  the  University  of  Bristol,
working on Bayesian models for including dose-response and longitudinal information into
network  meta-analyses,  drawing on his  background in  medical  statistics.  This  involved
translating the statistical theory and model into code for the MCMC samplers JAGS and
Stan. David has a PhD in Physics.

David discussed how dissemination of work to collaborators can be challenging, and how
technologies and libraries such as R and Knitr (R+LaTeX) can be used to provide a clear
demonstration of what is happening in the code and support reproducible research (Suppl.
material  4).  This  approach  offers  a  way  of  packaging  theories  for  sharing,  providing
‘reusable’ theories that are easy to reimplement and test.

Abstract

One  of  the  challenges  of  translating  theory  into  code  (and  vice  versa)  is  the  barrier
between the users of the code (who may well drive the theoretical basis of the models
forward) and the producers of the code. One way of reducing this barrier is to provide the
users of the research with easy to use and extensible versions of the code implementing
the  theory.  The  R  "ecosystem"  can  facilitate  this  (and  the  production  of  reproducible
research outputs) via the use of knitr, custom R packages and Shiny.

Dale Mellor

Dale is currently a Scientific Software Developer in the Cosmology Group of Astrophysics,
University of Manchester. He has previously worked on hydrometeorological (stochastic)
and hydrological (finite element) modelling. He has a PhD in maths.
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At present, Dale is writing code to implement cosmological theory. He talked about the
importance of understanding what the code is doing, both for testing and the removal of
bugs, but also in order to interpret the outcomes of research (Suppl. material 5). To assist
with this, it is important to display as much insightful detail as possible.

Eleni Mikroyannidi

Eleni works as a Data Architect at the BBC. Her responsibilities include the design of back-
end data architecture, domain modelling, establishing data workflows, data maintenance
and data quality  assurance, and defining metadata strategy.  Communicating strategies/
solutions  to  various  stakeholders,  both  technical  and  non-technical,  is  also  a  key
responsibility of her role. She has a PhD in ontology engineering.

Eleni’s talk covered her experience working at the BBC, managing data related to their
sports, education and children’s sections. This brought multiple levels of translating code
into theory, with the challenges depending on the task at hand. Within agile development,
there are workflows and schemas that support communication with others and help solve
problems. For example, you move from code to theory when investigating an error within a
system, conducting root  cause analysis to come with a solution (which often feels like
searching for a needle in a haystack due to legacy nature of the systems, although new
systems can cause problems too).

Abstract

It is important to understand the nature of the underlying theory you are trying to embody in
code, and why you are doing it.  Systems are often heterogeneous, with different code,
languages,  data, teams  and  stakeholders.  To  understand  theories  from  people  with
different expertise, you need to define a terminology that can be included in a data model.
This process involves cycles of investigation, where communication can be supported by
diagrams. It sounds chaotic, but it can also be fun.

Important aspects of code to theory translation:

• Abstracting away at the right level; architectural diagrams can do that well.

• Choosing the right vocabulary for communicating ideas to different stakeholders.

• Using the right examples for explaining to stakeholders.

Important aspects of theory to code translation:

• Having a clear understanding of requirements.

• Separating functional and non-functional requirements and highlighting features on
MVP.

• Breaking down big tasks (epic work) into small implementations.
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• Having a realistic timescale for the implementation of theory into code.

• Legacy systems can ruin your theory.

• Keeping realistic goals within your theory.

Richard Rollins

Richard is a Scientific Software Developer at the Jodrell  Bank Centre for Astrophysics,
where he works with the cosmology research group to create galaxy catalogues for the
Dark Energy Survey. He has a PhD in astrophysics and previously worked as a Software
Consultant at the DiRAC National Supercomputing Facility.

Richard uses image processing techniques to measure the shapes of galaxies from noisy
optical images which can be used to help constrain theories for how our universe formed.
In his experience working with research physicists, limited compute resources are often
cited as a bottleneck in their ability to do science (Suppl. material 6). In fact, code quality
and efficiency is a common and significant issue as people rarely know how to optimise
appropriately  for  given hardware and fail  to  apply  software engineering best  practices.
There are also open questions around the best statistical representations for large datasets
when confronting them with theoretical models; it is not uncommon to end up with multiple
different software pipelines which require a rigorous framework in order to be compared.
Understanding  the  relationship  between  code,  infrastructure  and  user,  building  around
robust frameworks for analytics (data structures, parallelism, etc.) and providing clean APIs
are key in allowing researchers to effectively and efficiently constrain theory from data.

Abstract

Cosmology is a field with much expertise in algorithms but far less experience in other
areas of computer science including hardware, high-performance computing and software
engineering.  This presents an ongoing challenge as new code is  needed to effectively
leverage new hardware for  ever  more ambitious  projects.  Robust  APIs  lead to  robust,
reusable and extensible software that allow scientists to spend more time doing science.
Promoting the value added by software developers and engineers in research is important
to break through perceived ceilings in code quality among researchers.

Andrew Rowley

Andrew is a Senior Research Software Engineer, currently working as the Lead Software
Engineer  for  the  SpiNNaker  tool  chain,  as  part  of  the  Human  Brain  Project.  He  was
previously a Senior Research Software Engineer at the National Centre For Text Mining,
Manchester and a Senior / Research Software Engineer at Research Computing.

In the Human Brain Project,  the SpiNNaker processor is being used to build a system
capable of simulating 1% of the human brain. Andrew’s work involves moving from theory
to software, running neural networks that are built in Python, and theoretical models built
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manually, which then create data (Suppl. material 7). When translating from data to theory,
it is often not understood in advance what the aim is. Goals are to create models that can
run in real-time and to provide an API framework that neuroscientists can use. The latter is
challenging, as researchers continually have new requirements that cannot be supported
by the current version of the API, and need further development.

Abstract

One of the biggest challenges in translating theory into code is understanding; that is the
understanding of the theory by the software engineers and the understanding of software
engineering by researchers. This becomes more apparent as larger and more complex
software tools are required to get the research results, and so the software starts to require
a level of engineering to ensure that it is correct and producing correct results, while at the
same time allowing new extensions to allow new research ideas to be incorporated. It is
unlikely that all researchers can be expected to become software engineers themselves,
and equally research software engineers can't be expected to gain full in-depth knowledge
of all areas of research. Thus there must be a level of communication between these two
parties to  ensure that  the final  software actually  implements the theory,  as well  as an
understanding of the importance of getting the code correct.

Julio Vega

Julio  is  a  PhD  candidate  in  the  School  of  Computer  Science  at  the  University  of
Manchester. His research examines how routines that can be monitored via mobile phone
affect Parkinson disease progression.

Like Alan, he stressed the difficulties caused by data ‘wrangling’, and how filtering data and
interpreting the results of analysis can be challenging. It can be daunting trying to integrate
different data sources and transform disparate formats into one suitable for analysis. He
also described the difficulties making comparisons across models.

Why is code/theory translation challenging?

In  the first  breakout  session,  participants  were asked to  identify  the key challenges of
translating between code and theory.  The question  was deliberately  high-level,  to  give
participants the freedom to discuss the issue in whatever terms they thought relevant.

Participants spoke about their own experience, and therefore covered a variety of contexts,
including writing scripts for data analysis,  creating platforms for workflows, dealing with
databases  with  complex  semantics,  and  large-scale  computational  models  and
simulations. The common thread running throughout was that the software was ultimately
used, at least in part, for creating new knowledge or understanding.
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A number of interrelated themes emerged from the discussion, covering both the technical
difficulties of writing software and the difference in both the knowledge and values of those
who  wrote  software  for  research  and  those  who  did  not.  Throughout  the  discussion,
participants highlighted the importance of communication and teamwork. The themes are
discussed in more detail in the subsections below, with an explanation and examples for
each.

Designing software

As scientific theory is continually changing, software applications that represent it are often
highly bespoke, and difficult to design: ‘Given there are a number of unknowns, how do you
design a plan?’

Constraints and abstractions help to narrow the options and allow you to focus down on the
problem: ‘by necessity, you have to concretise things. Computation doesn’t do undefined
variables  well.’  This  has  both  positive  and  negative  aspects.  Programming  necessarily
requires precision, which can mean that the code is at too great a level of abstraction, and
may not adequately represent the theory: ‘you need to be narrow to code things, but too
narrow might be lossy where the theory is concerned. Going too narrow too early can be
problematic.’

There is a tradeoff between the quick return offered by hard-coding values when they are
already known and the fact that in practice there often turn out to be later changes to a
model or unanticipated uses for the software. In astronomy, for example, values are often
hard coded, as software is used for the analysis of a particular galaxy. Code would then be
tweaked as required, for the analysis of further galaxies. Although this approach often does
the required job, coding more flexibly would widen the cases that the software could cater
for much earlier on, potentially saving time in the longer term. Developers were not against
hard coding per se -  sometimes, when you are trialling an approach or an idea it  is a
sensible  time-saving measure  -  but  there  comes a  time when ‘hard  coded values are
problematic’, and parameterisation is necessary. If you have a model which is flexible, it is
easier to adapt it as you acquire new understanding.

Sustaining software

The  bespoke  nature  of  scientific  software  also  causes  problems  in  terms  of  its
sustainability. RSEs recognise that for many aspects of novel software development they
may be ‘reinventing the wheel’, but it is often quicker to write something from scratch than
fix something that has been badly designed.

There is a related tension between deliberately developing software that is reusable, and
‘one-shot’  software that is intended for a single purpose, and often a single context or
instance  of  a  problem.  There  is  pressure  to  produce software  as  quickly  as  possible:
making it  flexible is  secondary,  with  the primary target  being to meet  the goals  of  the
project.
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Certain  practices  were  identified  as  helping  with  sustainability:  making  sure  code  is
documented;  ensuring that  more than one person is  familiar  with  the codebase (‘code
rarely  survives  beyond  six  months  of  somebody  leaving’);  using  source  control;  using
virtual machines and containers such as Docker.

It was often the case that people adopted version control out of necessity: ‘initially I had my
scripts,  but  as  things  got  complex,  I  started  using  Git  and  Jupyter.  Git  was  a  game
changer’; ‘when people start having problems (losing code) is when they start adopting
version control.’

Using containers was recognised as a step forward for reproducibility: ‘Docker is imperfect
but is a step ahead in that direction. It’s a good way of dealing with different versions.’

Alongside  the  emphasis  on  documentation,  was  a  desire  for  improved  communication
between developers, particularly when it comes to understanding someone else’s software,
and whether it is suitable for a particular purpose: ‘are there ways in which we can try code
faster? Sometimes you really want to ask someone, “can I do this with your code”?’.

There were also positive examples of design for sustainability paying off: a platform for data
collection started to be used more widely, beyond its original remit. Although it had to adapt
to the needs of new customers, ‘thanks to Git and similar,’ it was possible to scale it.

Misunderstanding of the domain

One of  the  key challenges faced by  RSEs was getting  to  grips  with  new and diverse
domains. In some projects, RSEs were not invited to the meetings where ‘the science’ was
discussed,  as  their  expertise  was  not  viewed  as  relevant.  As  a  result,  it  was  often  a
struggle to understand the nuances of the science they were trying to implement in code,
arising from a gap in understanding between domain experts, and RSEs: ‘you make many
assumptions of what is expected from you and changes or new requirements are given
halfway - you are expected to know everything beforehand.’

As the aim of any software developed was to encapsulate some form of theory or idea, the
person with the expertise in this area should drive the functionality. As a software engineer,
‘sometimes you lose the feeling of what you are doing.’ To help ensure the software was on
track, it was viewed as important to have the theory person in the testing loop. Ideally, they
would ‘go away and think about results and see if they seem as they would expect.’

Misunderstanding of the software engineering process

It  is  common  that  the  non-developers  within  a  project  (who  may  be  researchers,
academics, or other users), do not have a good understanding of the software engineering
process. This is not a problem in itself, but it starts to cause difficulties when it leads to
unrealistic expectations of what can be delivered: ‘in architecture, big delays in delivering
are taken for granted while in software engineering a minimal delay is outrageous.’
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Participants reported ‘fighting against PIs of the project who have preconceived ideas and
want  fast  outcomes,  which  may ultimately  cause problems’,  and the  fact  that  ‘building
software is not regarded as valuable’ was also a common complaint: ‘people spend ages
learning  how  to  use  equipment,  but  not  code  -  there  is  less  love  for  code  than  lab
equipment.’  Significant  amounts  of  money  are  still  used  to  develop  facilities,  but  less
thought  is  given  to  software.  There  was  a  perception  that:  ‘researchers  typically  want
something that works quickly, independent of its quality. We need to explain to people that
software quality  matters.’  There  was a  lack  of  appreciation  for  the skill  that  effectively
engineering software required, and that there would be a balance between ‘the quality of
the code, and the quality of the results.’

It was not just the process of building software, but also software itself that was perceived
as undervalued: ‘papers are the currency for scientists. What is the role of software in
terms of scientific outputs?’

The uncertainty of the scientific process meant that writing software properly was a gamble
- ‘is it worth spending time writing good software if it’s going to get thrown away?’ It is still
important to be able to express/explore early ideas in software prototypes, but these are
entirely different products to the software that is used to actually do research. It is essential
to  recognise  the  transition,  however:  ‘It’s  important  to  realise  where  you  are  in  that
situation.’ Doing this is tricky, and was viewed as a continuum, rather than binary.

There was an interesting paradox, where people failed to publish their code because they
were worried about it being incorrect - even if it underpinned an important scientific paper -
as there is a risk in sharing code: ‘what if someone finds a bug? The stakes are too high.’

Misunderstanding of computation

The  fact  that  many  researchers  (including  some  of  those  who  write  code),  lack  an
understanding of the software engineering process is well-documented. Jay et al. (In press)
The present discussions revealed that this issue also ran deeper, however, manifesting
itself not just as a lack of understanding of software engineering, but of computation itself:
‘not all scientists understand what software means - it is beyond their interest.’

There  was  a  concern  that  within  the  scientific  community  at  large,  there  is  ‘a  lack  of
understanding  about  how  computing  processes  work.’  Researchers  tended  to  view
software as a ‘black box, which is trusted’, and this perspective leads to ‘blaming bad data
or bad data collection when results are not expected.’ Treating software as a black box was
viewed as reasonable for proprietary software - where there wasn’t an alternative - but it
should be recognised that software produced for research is not necessarily perfect. There
was a concern that researchers ‘not only do not understand the complexity of software, but
they don’t know what coding is or what they want from it.’

One of the key issues raised was the importance of understanding that the implementation
of theory, or the output of the results, will depend on the software being used. A researcher
used to  traditional  statistical  solutions  wanted to  view results  as  concrete  or  absolute,
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whereas in reality, the results will depend on the implementation: ‘the system doesn’t have
a  floating  point,  this  doesn’t  mean this  is  wrong  as  floating  point  does  not  guarantee
precision’;  ‘it’s  not  wrong,  it’s  a  different  way of  doing it.’  For  example,  ‘you can solve
differential equations in different ways. Reproducibility is dependent on the system being
used and the outcomes are different.’

In  some  cases,  the  implementation  disagreed  with  models  generated  in  the  lab  and
elsewhere. Evaluation of software representing theory was critical, but also very difficult, as
instances were cited of people choosing to ‘believe’ the software outputs over the data for
real experimentation.

A final issue noted was that while not understanding software was clearly an issue for non-
technical  people,  it  was  also  a  problem  for  software  engineers  themselves:  software
created to model theory or advanced science is often highly complex, and even those who
create it can struggle to understand its intricacies and behaviour.

How can we improve code/theory translation?

In  the  second breakout,  participants  were  asked to  consider  potential  solutions  to  the
challenges that emerged in the previous discussion. Again, there was freedom to discuss
anything that people felt to be of relevance, rather than stick rigidly to addressing issues
point by point.

The  themes  identified  in  this  discussion  relate  to  improving  communication  between
different roles, increasing training, and changing research culture, such that the value of
software within research is properly understood. The overriding message was that code/
theory translation was now central to the scientific endeavour, and the most important way
of supporting it is to ensure it is viewed as a whole team responsibility.

Communication

Everyone agreed that the best science happened in cohesive teams and that the ‘human
element’ was an essential but elusive ingredient for success. Co-locating people in different
roles - such as domain experts, software engineers and statisticians - such that they could
talk regularly, and get used to each other’s technical language was viewed as essential,
particularly in interdisciplinary research: ‘planning and designing with a diverse team is
important’; ‘no one person knows everything - you need good communication skills for this,
but that can be an overhead’; ‘lots of bottlenecks happen… but lots of creativity happens at
the interface between two people; ‘code to theory is often one person, but there are lots of
benefits of using 2+ people with different/same/overlapping skills’.

Understanding theory, and then trying to implement it in code, is an extremely complex
process;  domain  experts  often  need  time  to  understand  the  theory,  so  for  software
engineers outside the domain, it is particularly difficult. It tends to be impossible to specify
requirements in full upfront; even specifying them partially can be a challenge: ‘the goal in
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research is often a moving target, therefore communication becomes essential.’ An area
where it  was viewed as vital  to  have significant  involvement  from domain experts  and
theoreticians  was  in  the  evaluation  of  the  computational  model  (or  other  virtual
representation of theory): ‘it’s important to validate as we’re going along to show the theory
is being followed’.

Interpersonal  skills  are  essential  too.  Sometimes  the  issue  ‘may  not  be  a  software
engineering issue, but a human factor.’

Tools and training

Training  in  software  engineering  skills  early  in  the  research  process  was  viewed  as
essential:  ‘can  we  train  researchers  early  enough  in  basic  software  tasks,  (testing,
continuous integration, version control) that they value it naturally? Even in the Arts, these
days, data sizes are increasing to the point that software skills are needed to manipulate
them. It might take a generation to bubble through.’ At present there is a ‘perceived ceiling
that by the end of PhD people will have enough computational knowledge to do high-level
research  without  software  engineering  experts,’  but  it  was  felt  that  in  reality,  many
researchers’ skills remain woefully inadequate.

From the perspective of software engineers, it is helpful to manage expectations, in terms
of explaining what is possible technically (‘making people understand that software is not
easy to get right is key’), and the implications of particular approaches: ‘the theoretician
says to do something; the software engineer implements. It’s not that simple. There is a
dialogue. We need to find a sweet spot, probably through tools that enable quick feedback,
and are able to increase understanding’; ‘sometimes there does not appear to be any need
for  communication as only  ONE person is  working on a project.  Then somebody else
inherits the project, but nobody has documented the work before handing it over.’

Tools such as Jupyter and electronic notebooks were thought to be very valuable in terms
of both retaining knowledge, and as a training tool: ‘so working software can be seen next
to theory.’

The value of software in research

Software has the potential to be both a tool for, and an outcome of, research. But while the
written expression of theory (words or formalisms) is constructed for human understanding,
and lab equipment has an obvious physical presence, software is both difficult for humans
to read and understand, and intangible - essentially, unseeable, and unknowable: ‘software
may not be hidden in the sense that it is openly available, but people don’t appreciate what
it  is  doing,  how much it  is  doing,  how important it  is.’  Formally recognising the role of
software engineering - and software engineers - was viewed as very helpful in this regard:
‘if you’ve only ever seen what can be achieved by a 'code-savvy' PhD student then seeing
what a room full of RSEs can do will be revelatory.’
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Interesting  questions  that  arose  here  included:  how  do  we  raise  the  profile  of  such
software?; to what extent do people need to understand the software to understand the
science?; how do we balance opening code and the need to commercialise? There was a
view that publishers and funding agencies should push for code to be open, but there was
also a concern that  current  publication models  ‘are sometimes effectively  a  thin  paper
wrapper  around  software,  and  simply  credit  academic  staff,  not  software  engineers.’
Academia should not  only recognise papers but  should also acknowledge the value in
software: ‘having software as a second class citizen is dangerous given that it is so often
core to the research process. By not crediting software properly it stalls scientific progress:
‘there is no time to write it properly, no way to extend a career off the back of it.’

If we are to consider software as an output of research, this raises the question of how we
disseminate and evaluate it: ‘it’d be great to have a platform where code was within the
workflow of writing papers, as it is difficult to use and modify the source of others (when it is
available).’  A  scale  of  research  software  'robustness',  from  ‘exploratory/throwaway’  to
‘publishable’ was viewed as useful, possibly modelled on the TriBITS Lifecycle Model.*1
The peer review of code must be addressed: ‘reviewing software is a large burden and
shouldn’t be underestimated. Is there a way to automate reviewing software at all?’ The
view that ‘we need to be careful  about shaming people for exploratory code’  was also
overwhelmingly expressed.

Conclusions

The overwhelming message from this first Code/Theory workshop was that science was a
team effort, and cohesive working across all the people involved in a research project was
essential to its success. While this in itself is not a surprising conclusion, it is probably true
to say that from the perspective of many of the RSEs, it was not always reflected in the
reality of their experience. This may be an artefact of the academic environment. Software
is not currently valued in the same way as more tangible expressions of theory, such as
words, or mathematics, and as such, software engineering is not valued in the same way
as better understood parts of the research process, despite the fact that it is integral to the
production of results.

RSEs do not write code in a vacuum, but play a key role in research activities: hypothesis
generation; study design; data analysis; interpretation of results. Everyone in a research
team is essential to its success, and while there is a natural division of labour between
RSEs - who spend more time writing code - and other researchers - who spend more time
writing papers - all of this work is core to the scientific endeavour. As illustrated in Fig. 1,
while some of us work on the software necessary to produce results, and others work on
the  surrounding  story  necessary  to  explain  them,  in  team-based  research  we  are  all
scientists. Recognising this fact, and embedding this message in academic discourse, is
key to securing the future of research.

14 Jay C et al



Acknowledgements 

The workshop organisers would like to thank all the participants for their time, experience,
expertise and enthusiasm.

Thank  you  to  the  Software  Sustainability  Institute  for  funding  this  workshop  through
Caroline Jay's Fellowship. The work carried out by the Software Sustainability Institute is
supported  by  the  UK  Engineering  and  Physical  Sciences  Research  Council  (EPSRC)
through grant EP/H043160/1 and EPSRC, BBSRC and ESRC Grant EP/N006410/1.

The  workshop  was  organised  by  Caroline  Jay,  Robert  Haines,  Markel  Vigo,  Nico
Matentzoglu  and  Robert  Stevens,  and hosted  at  the  School  of  Computer  Science,
University of Manchester, UK

References

• Jay C, Sanyour R, Haines R (In press) “Not everyone can use Git”: Research Software
Engineers’ recommendations for scientist-centred software support (and what
researchers really think of them). Journal of Open Research Software URL: https://
www.research.manchester.ac.uk/portal/files/53599032/JayCaroline_2.pdf 

 
Figure 1. 

In  many areas of  research,  science is  now produced at  the intersection of  the 'software',
contributed by programmers, and the 'story', or theoretical narrative, contributed by domain
experts. In team-based research, everyone is a scientist.
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