
Research Ideas and Outcomes 3: e12342
doi: 10.3897/rio.3.e12342

Reviewed v1

Project Report

Loading and plotting of cortical surface

representations in Nilearn

Julia M Huntenburg , Alexandre Abraham , João Loula , Franziskus Liem , Kamalaker Dadi ,
Gaël Varoquaux

‡ Max Planck Research Group for Neuranatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain
Sciences, Leipzig, Germany
§ Neurocomputation and Neuroimaging Unit, Free University Berlin, Berlin, Germany
| Inria Parietal, Saclay, France
¶ CEA Neurospin, Gif-Sur-Yvette, France
Department of Computer Science, École Polytechnique, Palaiseau, France

Corresponding author: Julia M Huntenburg (ju.huntenburg@gmail.com)

Received: 20 Feb 2017 | Published: 23 Feb 2017

Citation: Huntenburg J, Abraham A, Loula J, Liem F, Dadi K, Varoquaux G (2017) Loading and plotting of
cortical surface representations in Nilearn. Research Ideas and Outcomes 3: e12342.
https://doi.org/10.3897/rio.3.e12342

Abstract

Processing neuroimaging data on the cortical surface traditionally requires dedicated
heavy-weight software suites. Here, we present an initial support of cortical surfaces in
Python within the neuroimaging data processing toolbox Nilearn. We provide loading and
plotting functions for different surface data formats with minimal dependencies, along with
examples of their application. Limitations of the current implementation and potential next
steps are discussed.

Keywords

cortical surfaces, surface plotting, Python

‡,§ |,¶ |,# ‡ |,¶

|,¶

© Huntenburg J et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

https://doi.org/10.3897/rio.3.e12342
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.3.e12342&domain=pdf&date_stamp=2017-2-23
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.3.e12342&domain=pdf&date_stamp=2017-2-23
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.3.e12342&domain=pdf&date_stamp=2017-2-23
mailto:ju.huntenburg@gmail.com
https://doi.org/10.3897/rio.3.e12342

Introduction

The human cerebral cortex is highly convoluted. Surface representations of neuroimaging
data are essential to study cortical topography and to expose areas buried in sulcal depths.
Surface-based approaches have traditionally been implemented in dedicated software
suites, that can be hard to integrate with other tools. While the development of versatile
Python tools for neuroimaging has recently gained momentum (e.g. http://nipy.org/), most
of these tools focus on volumetric data. A notable exception is PySurfer (https://
pysurfer.github.io/), a Python package for rendering neuroimaging data on the cortical
surface. PySurfer provides high-level functions to visualise data processed with the
Freesurfer software (Dale et al. 1999, Fischl et al. 1999a). However, this design
complicates adaptation for other input data as it imposes a specific file layout. Moreover,
PySurfer requires the Mayavi library (Ramachandran and Varoquaux 2011) which can be
complicated to install.

Here we present a project that departs from this landscape in two ways: it strives 1) to
provide plotting for cortical surface data in Python under minimal dependencies, and 2) to
integrate surface data with multivariate processing in the Nilearn toolbox (Abraham et al.
2014).

Approach

In order to limit external dependencies to standard*1 Python libraries, we implemented
loading of surface data using Nibabel (Brett et al. 2016) and rendering of the triangular
surface meshes using Matplotlib (Hunter 2007). Beyond these two packages, only Numpy
(van der Walt et al. 2011) is required.

All functions are integrated in Nilearn's plotting module. The core functionality is
implemented in plot_surf, which initiates the figure and axes, renders the mesh using
Matplotlib's plot_trisurf function, and assigns colour for each triangle from the node-wise
input data. While plot_surf provides maximal parameter flexibility, we complemented it with
wrapper functions setting sensible default parameters for most common use cases.

A considerable challenge was posed by the multitude of surface file formats currently in
use, and the absence of an obvious community standard. The implemented loading
functions automatically determine the input type and convert it to a standard Python
structure. Input can be any file that can be read by Nibabel. Internally, surface mesh
geometries are represented as a list of two Numpy arrays (vertex coordinates and face
indices), and data to be displayed on the mesh as a single Numpy array. It is also possible
to pass these data structures directly. This design makes it easy to load common surface
file formats, but also allows the user to load other formats with custom scripts.

2 Huntenburg J et al

http://nipy.org/
https://pysurfer.github.io/
https://pysurfer.github.io/

Results and limitations

The resulting functions are demonstrated in two examples. The example data is hosted on
NITRC (https://www.nitrc.org/) and data fetchers for easy download and reuse were
implemented as part of this project.

In the first example, the Destrieux atlas (Destrieux et al. 2010) is displayed on Freesurfer's
fsaverage5 standard surface (Fischl et al. 1999b) using the plot_surf_roi function (Fig. 1).
This function is optimised for plotting discrete patches and each triangle is coloured
according to the median value of its three nodes. While this strategy prevents blurring
between patches, some boundaries appear rugged. This could be addressed in the future
by considering edge length during the determination of the triangle colours.

The second example uses resting-state fMRI data from 1 out of 102 subjects of the
enhanced NKI sample (Nooner et al. 2012), which was preprocessed and sampled on the
fsaverage5 surface (https://github.com/fliem/nki_nilearn) using Nipype (Gorgolewski et al.
2011). A seed region in the left posterior cingulate cortex is extracted from the Destrieux
atlas and displayed using the plot_surf_roi function in a medial view (Fig. 2a). The view
parameter is currently dependent on user specification of the hemisphere, and optimised
for the orientation of Freesurfer templates. Since the orientation of the brain in 3D space
can differ for other meshes, a solution which allows to specify elevation and azimuth
directly, or determines a sensible view automatically, will be an important next step.

Next in the example, functional connectivity of the seed region to all other cortical nodes in
the same hemisphere is calculated using Pearson's product-moment correlation coefficient.
The resulting correlation map is plotted using plot_surf_stat_map (Fig. 2b), which
determines face colours based on a linear interpolation of the node values and defaults to
a symmetric diverging colormap. The example also demonstrates how images can be
thresholded, plotted in a different colour scheme (Fig. 2c) and saved to disk.

Figure 1.

Destrieux atlas plotted on the fsaverage5 surface template using the plot_surf_roi function. a
Convoluted pial surface geometry of the left hemisphere. b Inflated pial surface geometry of
the left hemisphere.

Loading and plotting of cortical surface representations in Nilearn 3

https://www.nitrc.org/
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3549699
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3549699
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3549699
https://github.com/fliem/nki_nilearn

In figures 1 and 2a-c, sulcal depth information is used for shading of the convoluted
surface. While the depth data currently has to be provided by the user, it is conceivable to
include utilities for calculating sulcal depth internally. If no sulcal depth information is
provided, the functions default to displaying a semi-transparent mesh to expose the 3D
structure without shading (Fig. 2d). Transparency can also be controlled using the alpha
parameter.

Beyond the specific limitations discussed above, some general issues remain to be solved
in future work. Currently, each figure contains a single view surrounded by a lot of white
space. Convenient plotting of more complex scenes, including different views and a
colorbar, would be desirable. Moreover, 3D rendering remains relatively slow, a problem
which is adressed in an ongoing effort to improve the underlying Matplotlib code (https://
github.com/matplotlib/matplotlib/pull/6085). Finally, the present design still requires many
low-level inputs from the user. To avoid this, it might be necessary to represent surfaces in
a more complex object, such as a Nibabel GiftiImage. A challenge here is the lack of a
standard representation of surface data in the community.

Figure 2.

Seed-based functional connectivity example. a Seed region in the posterior cingulate cortex
(PCC). b Pearson product-moment correlation coefficient from the seed region time series to
all other nodes. c The same map as in b, thresholded and plotted with a different colour
scheme. d The same map as in b, plotted without sulcal depth information for shading.

4 Huntenburg J et al

http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3549711
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3549711
http://arpha.pensoft.net//display_zoomed_figure.php?fig_id=3549711
https://github.com/matplotlib/matplotlib/pull/6085
https://github.com/matplotlib/matplotlib/pull/6085

Conclusion

We implemented a set of functions to load and plot surface representations of
neuroimaging data in Python and demonstrated their application in examples. The
functions are easy to use, flexibly adapt to different use cases, and only require Numpy,
Matplotlib and Nibabel. While multiple features remain to be added and improved, this work
presents a first step towards the support of cortical surface data in Nilearn.

Acknowledgements

This work was completed during Brainhack Paris 2016 and Brainhack Anatomy Paris 2016.

Author contributions

JMH, AA and GV designed the project. JMH, AA and JL contributed to the code. KRD and
GV reviewed the code. FL preprocessed the example data. JMH wrote the initial draft of the
manuscript. AA, GV, JL, FL and KRD revised the manuscript.

Conflicts of interest

None declared.

References

• Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J, Gramfort A,
Thirion B, Varoquaux G (2014) Machine learning for neuroimaging with scikit-learn.
Frontiers in neuroinformatics 8: 14. https://doi.org/10.3389/fninf.2014.00014

• Brett M, Hanke M, Cipollini B, Côté M, Markiewicz C, Gerhard S, Larson E, Lee G,
Halchenko Y, Kastman E, cindeem, Morency F, moloney, Millman J, Rokem A, jaeilepp,
Gramfort A, den Bosch JFv, Subramaniam K, Nichols N, embaker, bpinsard,
chaselgrove, Oosterhof N, St-Jean S, Amirbekian B, Nimmo-Smith I, Ghosh S,
Varoquaux G, Garyfallidis E (2016) nibabel: 2.1.0. Zenodo https://doi.org/10.5281/
ZENODO.60808

• Dale A, Fischl B, Sereno M (1999) Cortical Surface-Based Analysis. NeuroImage 9 (2):
179‑194. https://doi.org/10.1006/nimg.1998.0395

• der Walt Sv, Colbert SC, Varoquaux G (2011) The NumPy Array: A Structure for
Efficient Numerical Computation. Computing in Science & Engineering 13 (2): 22‑30.
https://doi.org/10.1109/mcse.2011.37

• Destrieux C, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human
cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53 (1):
1‑15. https://doi.org/10.1016/j.neuroimage.2010.06.010

Loading and plotting of cortical surface representations in Nilearn 5

https://doi.org/10.3389/fninf.2014.00014
https://doi.org/10.5281/ZENODO.60808
https://doi.org/10.5281/ZENODO.60808
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1109/mcse.2011.37
https://doi.org/10.1016/j.neuroimage.2010.06.010

• Fischl B, Sereno M, Dale A (1999a) Cortical Surface-Based Analysis. NeuroImage 9
(2): 195‑207. https://doi.org/10.1006/nimg.1998.0396

• Fischl B, Sereno M, Tootell RH, Dale A (1999b) High-resolution intersubject averaging
and a coordinate system for the cortical surface. Human Brain Mapping 8 (4): 272‑284.
https://doi.org/10.1002/(sici)1097-0193(1999)8:43.0.co;2-4

• Gorgolewski K, Burns C, Madison C, Clark D, Halchenko Y, Waskom M, Ghosh S
(2011) Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing
Framework in Python. Frontiers in Neuroinformatics 5 https://doi.org/10.3389/
fninf.2011.00013

• Hunter J (2007) Matplotlib: A 2D Graphics Environment. Computing in Science &
Engineering 9 (3): 90‑95. https://doi.org/10.1109/mcse.2007.55

• Nooner KB, Colcombe S, Tobe R, Mennes M, Benedict M, Moreno A, Panek L, Brown
S, Zavitz S, Li Q, Sikka S, Gutman D, Bangaru S, Schlachter RT, Kamiel S, Anwar A,
Hinz C, Kaplan M, Rachlin A, Adelsberg S, Cheung B, Khanuja R, Yan C, Craddock C,
Calhoun V, Courtney W, King M, Wood D, Cox C, Clare Kelly AM, Martino AD, Petkova
E, Reiss P, Duan N, Thomsen D, Biswal B, Coffey B, Hoptman M, Javitt D, Pomara N,
Sidtis J, Koplewicz H, Castellanos FX, Leventhal B, Milham M (2012) The NKI-Rockland
Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry.
Frontiers in Neuroscience 6 https://doi.org/10.3389/fnins.2012.00152

• Ramachandran P, Varoquaux G (2011) Mayavi: 3D Visualization of Scientific Data.
Computing in Science & Engineering 13 (2): 40‑51. https://doi.org/10.1109/
mcse.2011.35

• Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S, Turner R, Bazin
P- (2014) Anatomically motivated modeling of cortical laminae. NeuroImage 93:
210‑220. https://doi.org/10.1016/j.neuroimage.2013.03.078

Endnotes
where standard refers to the context of neuroimaging data analysis *1

6 Huntenburg J et al

https://doi.org/10.1006/nimg.1998.0396
https://doi.org/10.1002/(sici)1097-0193(1999)8:43.0.co;2-4
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.1109/mcse.2007.55
https://doi.org/10.3389/fnins.2012.00152
https://doi.org/10.1109/mcse.2011.35
https://doi.org/10.1109/mcse.2011.35
https://doi.org/10.1016/j.neuroimage.2013.03.078

	Abstract
	Keywords
	Introduction
	Approach
	Results and limitations
	Conclusion
	Acknowledgements
	Author contributions
	Conflicts of interest
	References

