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Abstract

Processing  neuroimaging  data  on  the  cortical  surface  traditionally  requires  dedicated
heavy-weight software suites. Here, we present an initial support of cortical surfaces in
Python within the neuroimaging data processing toolbox Nilearn. We provide loading and
plotting functions for different surface data formats with minimal dependencies, along with
examples of their application. Limitations of the current implementation and potential next
steps are discussed.
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Introduction

The human cerebral cortex is highly convoluted. Surface representations of neuroimaging
data are essential to study cortical topography and to expose areas buried in sulcal depths.
Surface-based  approaches  have  traditionally  been  implemented  in  dedicated  software
suites, that can be hard to integrate with other tools. While the development of versatile
Python tools for neuroimaging has recently gained momentum (e.g. http://nipy.org/), most
of  these  tools  focus  on  volumetric  data.  A  notable  exception  is  PySurfer  (https://
pysurfer.github.io/),  a  Python  package  for  rendering  neuroimaging  data  on  the  cortical
surface.  PySurfer  provides  high-level  functions  to  visualise  data  processed  with  the
Freesurfer  software  (Dale  et  al.  1999,  Fischl  et  al.  1999a).  However,  this  design
complicates adaptation for other input data as it imposes a specific file layout. Moreover,
PySurfer requires the Mayavi library (Ramachandran and Varoquaux 2011) which can be
complicated to install.

Here we present a project that departs from this landscape in two ways: it strives 1) to
provide plotting for cortical surface data in Python under minimal dependencies, and 2) to
integrate surface data with multivariate processing in the Nilearn toolbox (Abraham et al.
2014).

Approach

In order to limit  external  dependencies to standard*1 Python libraries,  we implemented
loading of surface data using Nibabel (Brett et al. 2016) and rendering of the triangular
surface meshes using Matplotlib (Hunter 2007). Beyond these two packages, only Numpy
(van der Walt et al. 2011) is required.

All  functions  are  integrated  in  Nilearn's  plotting  module.  The  core  functionality  is
implemented  in  plot_surf,  which  initiates  the  figure  and  axes,  renders  the  mesh using
Matplotlib's plot_trisurf function, and assigns colour for each triangle from the node-wise
input data. While plot_surf provides maximal parameter flexibility, we complemented it with
wrapper functions setting sensible default parameters for most common use cases.

A considerable challenge was posed by the multitude of surface file formats currently in
use,  and  the  absence  of  an  obvious  community  standard.  The  implemented  loading
functions  automatically  determine  the  input  type  and  convert  it  to  a  standard  Python
structure.  Input  can  be  any  file  that  can  be  read by  Nibabel.  Internally,  surface  mesh
geometries are represented as a list of two Numpy arrays (vertex coordinates and face
indices), and data to be displayed on the mesh as a single Numpy array. It is also possible
to pass these data structures directly. This design makes it easy to load common surface
file formats, but also allows the user to load other formats with custom scripts.
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Results and limitations

The resulting functions are demonstrated in two examples. The example data is hosted on
NITRC  (https://www.nitrc.org/) and  data  fetchers  for  easy  download  and  reuse  were
implemented as part of this project.

In the first example, the Destrieux atlas (Destrieux et al. 2010) is displayed on Freesurfer's
fsaverage5 standard surface (Fischl et al. 1999b) using the plot_surf_roi function (Fig. 1).
This  function  is  optimised  for  plotting  discrete  patches  and  each  triangle  is coloured
according to the median value of  its  three nodes.  While this  strategy prevents blurring
between patches, some boundaries appear rugged. This could be addressed in the future
by considering edge length during the determination of the triangle colours.

The  second  example  uses  resting-state  fMRI  data  from 1  out  of  102  subjects  of  the
enhanced NKI sample (Nooner et al. 2012), which was preprocessed and sampled on the
fsaverage5 surface (https://github.com/fliem/nki_nilearn) using Nipype (Gorgolewski et al.
2011). A seed region in the left posterior cingulate cortex is extracted from the Destrieux
atlas and displayed using the plot_surf_roi function in a medial view (Fig. 2a). The view
parameter is currently dependent on user specification of the hemisphere, and optimised
for the orientation of Freesurfer templates. Since the orientation of the brain in 3D space
can  differ  for  other  meshes,  a  solution  which  allows  to  specify  elevation  and  azimuth
directly, or determines a sensible view automatically, will be an important next step.

Next in the example, functional connectivity of the seed region to all other cortical nodes in
the same hemisphere is calculated using Pearson's product-moment correlation coefficient.
The  resulting  correlation  map  is  plotted  using  plot_surf_stat_map (Fig.  2b),  which
determines face colours based on a linear interpolation of the node values and defaults to
a  symmetric  diverging  colormap.  The example  also  demonstrates  how images can be
thresholded, plotted in a different colour scheme (Fig. 2c) and saved to disk.

 
Figure 1. 

Destrieux atlas plotted on the fsaverage5 surface template using the plot_surf_roi function. a
Convoluted pial surface geometry of the left hemisphere. b Inflated pial surface geometry of
the left hemisphere.
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In  figures  1  and  2a-c,  sulcal  depth  information  is  used  for  shading  of  the  convoluted
surface. While the depth data currently has to be provided by the user, it is conceivable to
include  utilities  for  calculating  sulcal  depth  internally.  If  no  sulcal  depth  information  is
provided, the functions default to displaying a semi-transparent mesh to expose the 3D
structure without shading (Fig. 2d). Transparency can also be controlled using the alpha
parameter.

Beyond the specific limitations discussed above, some general issues remain to be solved
in future work. Currently, each figure contains a single view surrounded by a lot of white
space.  Convenient  plotting  of  more  complex  scenes,  including  different  views  and  a
colorbar, would be desirable. Moreover, 3D rendering remains relatively slow, a problem
which is adressed in an ongoing effort to improve the underlying Matplotlib code (https://
github.com/matplotlib/matplotlib/pull/6085). Finally, the present design still  requires many
low-level inputs from the user. To avoid this, it might be necessary to represent surfaces in
a more complex object, such as a Nibabel GiftiImage. A challenge here is the lack of a
standard representation of surface data in the community.

 
Figure 2. 

Seed-based functional connectivity example. a Seed region in the posterior cingulate cortex
(PCC). b Pearson product-moment correlation coefficient from the seed region time series to
all  other nodes.  c The same map as in b,  thresholded and plotted with a different  colour
scheme. d The same map as in b, plotted without sulcal depth information for shading.
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Conclusion

We  implemented  a  set  of  functions  to  load  and  plot  surface  representations  of
neuroimaging  data  in  Python  and  demonstrated  their  application  in  examples.  The
functions are easy to use, flexibly adapt to different use cases, and only require Numpy,
Matplotlib and Nibabel. While multiple features remain to be added and improved, this work
presents a first step towards the support of cortical surface data in Nilearn.
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where standard refers to the context of neuroimaging data analysis *1
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