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Abstract

Background

In this project,  we propose to explore the modular characteristic of spider silk proteins,
through  synthetic  biology  techniques,  by  combining  and  directing  its  properties  to  the
desired application. The aim of this project is to generate a modular bionanomaterial able
to immobilize proteins.  This  bionanomaterial  will  be composed of  modular  recombinant
proteins from spider silk, which will be the immobilization support to other proteins, in this
project  an  antimicrobial  protein  (enzybiotic).  By  combining  these  proteins  and  their
properties,  the primary focus will  be the use of  this technology for the development of
artificial skin for burn victims.
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New information

The  recombinant  proteins,  spider  silk  proteins  and  enzybiotics,  will  be  expressed  in
Chlamydomonas reinhardtii strains by nuclear transformation. Each recombinant strain will
express  a  different  protein,  which  will  contain  the  N-  and  C-terminal  polymerization
domains  from  native  spider  silk  proteins.  These  domains  are  essential  to  the
polymerization step and, subsequently, for production of a material very similar to silk. This
material will be evaluated regarding its antimicrobial and mechanical properties, as well as
the  system  productivity.  These  results  may  shed  some  light  on  spider  silk-based
immobilization support effectiveness, even for other biotechnological applications, such as
the one idealized here.
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Overview and background

Immobilization techniques are applied to a wide range of treatments and processes, from
medical applications to biotransformations in industrial  plants. The industrial/commercial
application of biomolecules such as proteins depends on the stability and functionality of
the process employed. This process often differs from the natural environment of proteins
in terms such as temperature, presence of organic solvents and pH values. Consequently,
techniques such as immobilization can promote stabilization and add functionality even
when these biomolecules are under different environmental conditions. This stabilization is
normally achieved by protein binding to a scaffold (Liese and Hilterhaus 2013). Recent
studies explored spider silks as a possible immobilization support (Blüm et al. 2013, Monier
2013). This biomaterial has exceptional properties such as tensile strength and tension.
Furthermore,  medical  applications  are  possible  due  to  its  biocompatibility  and
biodegradability,  as  coating  for  implants  and  transplanted  organs,  drug  delivery  and
scaffolding for cell lines (Lewis 2006, Hardy et al. 2008, Kluge et al. 2008).

The aim of this project is to use this biomaterial for protein immobilization. Initially, we will
immobilize enzybiotics for  application to burn wounds, as a model  to test  this support.
However, there are other possible applications with economic and academic interest. Fig. 1
presents an overview of the project.
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Immobilization Systems

The  retention  of  molecules  inside  a  reactor,  or  an  analytical  system,  is  described  as
immobilization, whose purpose is to improve protein stability, selectivity, and particularly for
the enzymes, increase catalytic activity (Tomotani et al. 2005). Aside from enzymes, other
protein types can be immobilized, for example peptide domains for protein purification or
immobilization such as: albumin binding domain (ABD), avidin (AvBD) and immunoglobulin
G (ImGBD) (Luisi et al. 2013).

Enzymes  are  widely  used  in  our  society,  and  their  applications  range  from  industrial
processes - such as in food production, biofuels and tissue - to more complex therapeutic
applications, such as biopharmaceuticals (e.g., asparaginase use for acute lymphoblastic
leukemia treatment (Pieters et al. 2010).

A medical application that benefits from enzyme immobilization is biosensor development
(Sassolas et  al.  2012).  These devices display additional  advantages such as reliability,
speed, ease of handling and low cost compared to traditional diagnostic methods (Khan
and Alzohairy 2010).  Immobilized therapeutic enzymes are also being exploited due to
their  stability  and  reusability  which  enhance  the  targeting  of  specific  tissues  and  cells
(Bosio et al. 2015).

 
Figure 1. 

Project overview. Schematic representation of spider web structure from macro to nano scale.
A  representation  of:  enzybiotic  protein  from  a  bacteriophage;  a  spider  silk  protein  with
repetitive domains and N and C terminals; host expression system Chlamydomonas reinhardtii
and a chimeric protein envisioned in this project; and the final product, a biopatch produced
from recombinant silk proteins and chimeric proteins.
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Enzybiotics

Enzybiotics comprise a class of enzymes with antibiotic activity. These enzymes are able to
fight resistant bacteria, such as MRSA, VRSA and VISA (Rashel et al. 2007), antibiotic
resistant strains of Staphylococcus aureus,  which is a serious and recurring problem in
hospitals.  Enzybiotics  refers  mainly  to  the  antibacterial  potential  of  bacteriophage  lytic
enzymes endowed with the capacity to degrade bacterial cell wall (Rashel et al. 2007 ). This
set  of  enzymes exhibits  potential  application on burn wounds otherwise susceptible  to
opportunistic colonization by microorganisms (Merabishvili et al. 2009). Thus, an artificial
skin graft with antimicrobial properties may present a therapeutic option. Furthermore, an
immobilized enzyme may not easily penetrate the skin and would thereby exhibit low or no
allergenicity (Sheldon and van Pelt 2013). Considering this application and the different
materials used as support matrix, enzybiotic functionalized spider silk proteins become an
attractive alternative.

Spider webs

The  polymer  constituting  the  spider  silk  bears  interesting  properties  for  various
applications, including immobilization of molecules such as proteins. Spider silk is known
mainly for its tensile strength and fracture resistance, but also exhibits elasticity, adhesion,
biocompatibility  and low degradation.  Its  strength can be compared to Kevlar  synthetic
polymer, which is composed of aramid and is used in for manufacturing body armor (Lewis
2006).

It is known that certain repetitive sequences of amino acids confer specific properties to
these  structures  and  proteins  in  tissue,  allowing  one  to  obtain  materials  with  desired
characteristics through genetic manipulation of these structural domains. The poly-alanine
domains  (poly(A/GA)  (Glycine-Alanine)  in  MaSp1  proteins,  MaSp2  and  MISP  are
associated  with  formation  of  beta-sheets  and  the  production  of  strong  fibers,  while
repeating sequences "GPGGx" and "GGX" as in  Flag protein,  preferably  generates an
elastic beta-spiral region, which provides elasticity (Tokareva et al. 2014).

In addition, terminal domains (N-terminal NT and C-terminal CT) are highly conserved both
among species and different types of silk (Garb et al.  2010), which suggests they play
important  roles  in  the  formation  of  silk  and not  in  the  generation  of  its  mechanical
properties  per  se.  The  change  in  CO  and  proton  concentrations  controlled  by  the
glandular  duct  ensures  that  polymerization  occurs  in  precise  time  and  space,  at  high
speeds, reaching more than 1 m / s (Andersson et al. 2014).

There is some evidence of dependence on N- and C-terminal domains for polymerization,
which can lead to interesting technological possibilities. The adaptation of these domains
flanking a protein of interest opens the possibility of its immobilization if spun alongside
“native” spider silk proteins. Moreover, core structural domains’ ("poly(A/GA" and "GPGGx"
and "GGX")  customization influence the physical  properties of  the silk  (Tokareva et  al.
2014).  Fig.  2 represents a scheme of  the spider silk  proteins and the chimeric protein
proposed in this project.
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Expression System

Heterologous proteins are produced in several established expression systems, such as
Escherichia coli, mammalian cell lines and yeast, but several systems are in the developing
pipeline. Appropriate expression system choice should be based on priorities regarding
performance  and  requirements  of  each  recombinant  protein  (Walsh  2014).  Currently,
mammalian "CHO" cells (Chinese Hamster Ovary) and E. coli are the most used systems,
which correspond to 35.5% and 19%, respectively, of the total products approved by the
FDA in biopharmaceuticals (Walsh 2014). E. coli cells have rapid growth, productivity and
low production cost, but it is a system unable to produce complex proteins and some post-
translational  modifications. Moreover,  the production of endotoxins and inclusion bodies
requires more purification process steps (Petsch 2000).

Therapeutic  proteins  are  preferably  produced  in  transgenic  mammalian  cell  systems,
because of their ability to express and correctly fold proteins. However, its production cost
is high, especially when compared to plants as expression systems. Molecules such as
monoclonal antibodies (mAbs) are mainly produced in mammalian cells and their average
production cost  in this  system is estimated to be $ 150.00 per gram of  raw materials,
whereas production in plant systems costs approximately US$0.05 per gram (Dove 2002,
Mayfield et  al.  2003).  But  the estimated value for  algae reaches US $ 0.002 per  liter,
making  them  potential  competitors  for  land  plants  (Mayfield  et  al.  2003).  Microalgae
present  several  desirable  features  in  an  expression  system,  such  as:  rapid  growth
(characteristic  for  microbial  growth),  swift  and  stable  transgenic  lineage  generation,
scalability and low-cost production (Wijffels et al. 2013, Rosenberg et al. 2008). They are
also  able  to  produce  and  secrete  complex  proteins  and  perform  post-transcriptional

 
Figure 2. 

Schematic  representation  of  spider  silk  proteins  and  chimeric protein.  A:  MaSp1  -  Major
ampullate spidroin 1, MaSp2 - Major ampullate spidroin 2 B: Chimeric protein of a enzybiotic
with N and C terminals domains of spider silk proteins.
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modifications.  They  are  Generally  Regarded  As  Safe  (GRAS),  with  low  risk  of  virus
contamination, prions or bacterial  endotoxins, and establish no gene flow with the flora
around through pollens as in transgenic plants (Mayfield et al. 2007).

However, the studies on genetic engineering using microalgae are incipient and present
challenges. The main challenge is the low productivity of recombinant proteins expressed
in the nuclear genome, hindering commercial applications to date (Rasala and Mayfield
2011). Strategies to increase nuclear expression levels in Chlamydomonas reinhardtii are
being developed. These strategies may result in productivity gains, enabling commercial-
scale production. Such strategies include codon optimization (León-Bañares et al. 2004),
development of alternative vectors (Heitzer and Zschoernig 2007, Lauersen et al. 2013)
and modifications to the design expressed constructs. Changes in constructs include the
addition of autocleavage peptide (Rasala et al.  2012), use of fused promoters (Eichler-
Stahlberg et al. 2009, Schroda et al. 2000) and addition of intronic sequences (Eichler-
Stahlberg  et  al.  2009,  Lumbreras  et  al.  1998).  Alongside  these  improvements,
Chlamydomonas reinhardtii presents a GC-rich genome, which may play an important role
in spider silk protein expression due to its high GC content. It is hypothesized that high GC
content clogs the heterologous expression of this kind of protein in non-GC-rich systems
(Yang et al. 2016).

Objectives

• Evaluate production capacity of synthetic spider silk proteins (based on MaSp1 and
MaSp2)  and protein  chimeras  with  NT and CT domains  flanking  enzybiotics  in
Chlamydomonas reinhardtii by transforming the nuclear genome;

• Set methods for polymerization of silk produced by microalgae;
• Test  biopolymer  and  antibiotic  properties  of  spun  spider  silk,  pure  and  in

combination with enzybiotic chimeric proteins;
• Assess  the  project  development  in  an  iGEM  competition  context  regarding  its

scientific achievement and the real-time openness in all process steps: idealization,
laboratory procedures, results and discussion

Impact

Many obstacles need to be overcome for the effective production of a biomaterial such as a
recombinant spider silk capable of immobilizing proteins in its matrix. With this purpose,
this project offers solutions, as of yet untested, for example: the use of microalgae as a
production platform for the expression of spider silk proteins, as well as chimeras with NT
and CT domains, and flanking enzybiotics. Research on transgenic microalgae are driven
by  the  global  demand  for  recombinant  proteins  and  other  bioproducts.  This
biotechnological market is growing exponentially, it has reached 140 billion dollars in sales
as  of  2013,  and  it  continues  to  grow  (Walsh  2014)  with  the  potential  for  commercial
application.
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More than developing a product that could help thousands of patients, the development of
an antibiotic chimeric biopolymer in C. reinhardtii can result in many scientific outcomes.
Spider  silk  is  a  challenging  material  to  work  with,  and  accessing  its  production  with
chimeric and functional materials can pave the way for many applications in the biomaterial
field. Moreover, the microalgae community is still  incipient,  in comparison to the E. coli
system, and integrative projects like this one can expand the synthetic biology tools applied
to this model microorganism, which will benefit the scientific community.

It is important to highlight the fact that this project will be carried out at an international
competition  dedicated  to  the  development  of  high-level  research  in  Synthetic  Biology
(iGEM  -  International  Genetically  Engineered  Machine)  with  an  open  and  integrative
approach.  This  competition  takes  place  annually  in  Boston,  USA,  and  it  stimulates
interdisciplinary groups to problem solving through genetically modified organisms. In line
with this  proposal,  the team responsible for  this  project  consists  of  undergraduate and
graduate students from various institutes of the University of São Paulo. The blending of
open approaches and such interdisciplinary groups contributes to the development of the
research per se , ultimately impacting its quality and depth for the better. The project is also
integrated  with  the  SynBio  Brasil  community,  actively  engaged  in  promoting  synthetic
biology education, leading to a powerful impact on scientific awareness in Brazil.

Implementation

Plasmid Construction 

The vector  pBluescript  II  (Thermo Fisher  Scientific Inc.)  will  be  used.  The constructed
cassette will be flanked by the restriction sites Kpn l at one end, and Xba l at the other.
There  are  also  two  different  restriction  sites,  Xho  l  and  Bam HI,  flanking  the  coding
sequence of  the  desired protein.  The codons of  the  proteins  will  be  optimized for  the
expression in C. reinhardtii nucleus (Fuhrmann et al. 1999) and the restriction sites Kpn l
and Xba l will be removed. Rubisco introns will be inserted in the promoter hsp70A/rbcs2
sequence, in the Sh-ble sequence and in the terminal region RbcS2 3’ UTR, aiming to
increase the expression of the protein of interest (Eichler-Stahlberg et al. 2009, Lumbreras
et  al.  1998).  Primers  will  be  designed to  confirm (by  PCR) the insertion  of  the  whole
sequence in the plasmidial vector. Fig. 3 shows the generic cassette for expression.

The native proteins MaSp1 and MaSp2 (Major Ampullate Silk Protein) were selected since
they are the most studied proteins among the cob constituents. The antimicrobial enzymes
were selected from a screening of the phiBIOTICS databank (Hojckova et al. 2013) looking
for  molecules  that  are  effective  against  resistant  strains  of  Staphylococcus  aureus.  All
these proteins are summarized in Table 1.
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Protein Source Information Ref. 

MaSp1 Latrodectus hesperus (Black
Widow) 

CDS fully sequenced Ayoub et al. 2007

MaSp2 Latrodectus hesperus (Black
Widow) 

CDS fully sequenced Ayoub et al. 2007

NTD + MV-L + CTD Bacteriophage phiMR11 Effective against MRSA, VRSA
e VISA

Rashel et al. 2007

NTD + LysK + CTD Bacteriophage K Effective against MRSA e
VRSA

O'Flaherty et al.
2005

NTD + Lysostaphin +
CTD

Staphylococcus simulans Effective against MRSA,
ORSA e VISA

Yang et al. 2007

C. reinhardtii cultivation

The C. renhardtii strain cc1690 will be obtained at the Chlamydomonas Resource Center.
After  going  through  the  process  of  transformation,  the  ones  identified  to  produce  the
protein of interest will be grown for protein production. The strains will be cultivated in TAP
(Tris-Acetate-Phosphate) medium (Gorman and Levine 1965) in 250 mL Erlenmeyer flasks,
containing  50  mL  of  the  medium,  at  temperatures  between  20-25ºC,  under  constant
agitation at 100-150 rpm and constant illumination of 50 ± 10 μE/m 2 s. The growth will be

 
Figure 3. 

Cassette construction to be inserted in C. renhardtii nuclear genome for the expression of
desired  proteins.  Promoter  hsp70A/rbcs2:  fusion  of  the  promoters  hsp70A  and  rbcs2
(Eichler-Stahlberg et al.  2009, Schroda et al.  2000). Sh-Ble:  gene that gives resistance to
Zeomycin. 2A:  self-cleavage peptide obtained from Foot and Mouth Disease Virus (FMDV)
(Rasala et al. 2012). PS:  Secretion signal peptide of the gene Ars1. GOI:  gene of interest
coding the proteins to be used in the project. His: coding sequence of six histidines (histidine
tag). RbcS2 3’UTR: terminal sequence (untranslated region) of the gene RbcS2 (Fuhrmann et
al. 1999)

Table 1. 

Desired proteins to be expressed in C. renhardtii.

NTD: N-terminal domain of MaSp 1. CTD: C-terminal domain of MaSp1. MRSA: Methicillin-resistant
S.  aureus.  VRSA:  Vancomycin-resistant  S.  aureus. VISA:  Vancomycin-intermediate  S.  aureus. 
ORSA: Oxacillin-resistant S. aureus. CDS: Coding DNA sequence. MaSp1: Major Ampullate Silk
Protein 1. MaSp2: Major Ampullate Silk Protein 2.
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evaluated by cell counting with Neubauer chambers and by reading the absorbance at 750
nm wavelength every 12 h (Eichler-Stahlberg et al. 2009). Aliquots will be taken during the
growth process for further analysis and for identification of the proteins through Western
Blot.

C. reinhardtii transformation

C. renhardtii cells will be grown in TAP medium until reaching the cell density of 3-6 x 106
cells/mL. The cells will  be collected by centrifugation and resuspended in TAP enriched
with 40 mM of sucrose reaching a cell density of 3-6 x 10 6 cells/mL. Then, 250 μL of the
culture will be incubated with 300-1000 ng of plasmidial DNA, previously linearized through
the  digestion  with  Xba l  and  Kpn l  for  5-10  min  in  cuvettes  kept  in  an  ice  bath.  An
exponential  electrical  pulse  of  2000  V/cm  will  be  applied  to  the  sample  with  an
electroporation device, GenePulser XCellTM (BioRad, Hercules, CA). Capacitance will be
adjusted to 25 mF and the resistance will  not be regulated. After that, the cells will  be
incubated for 18 h in 10 mL of TAP/40 mM sucrose and plated in TAP/Zeocin solid medium
(Rasala et al. 2012).

Selection of mutants and identification of recombinant proteins

Recovered  cells  will  be  plated  on  TAP  agar  medium  with  increasing  antibiotic
concentrations (0.1, 2 and 5 μg/mL Zeocin). Candidate transformed colonies, displaying
high  Zeocin  resistance,  will  be  analyzed  through  PCR  screening,  and  PCR  positives
colonies will  be tested for  protein of  interest  production by Western blot.  Basically,  the
mutant cells are cultured as described above and fractions of the supernatant and cell
lysate  will  be  tested  for  the  presence  of  the  protein  of  interest.  Cell  lysis  will  be
accomplished by sonication as described in the literature (Lumbreras et al. 1998).

Western Blot

Samples of supernatant and total soluble proteins will be denatured by adding SDS-PAGE
loading buffer (Laemmli) with β-mercaptoethanol, followed by incubation at 95 °C for 5 min.
Proteins will be separated on 12% polyacrylamide gels at 120-150 V and transferred to
nitrocellulose membrane at 200mA for 1h. Then they will  be blocked in 5% solution of
skimmed milk and the protein of interest will be probed with monoclonal mouse anti-His
antibody. The membrane will then be washed 3 times with TBS-T (Tris-buffered saline with
Tween 20 detergent) for 10 min and incubated with anti-mouse antibody conjugated with
alkaline  phosphatase,  5-bromo-4-chloro-3-indolyl-phosphate  (BCIP)  and  nitroblue
tetrazolium (NBT) substrates which forms an insoluble dark blue diformazan precipitate,
allowing protein identification.

Recombinant proteins purification

Purification of  the proteins of  interest  will  be carried out  by Nickel  resin  (Ni  Superflow
His60, Clontech®) following the manufacturer's instructions. The method is based on the
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affinity  interaction  with  the  hexa  histidine  tail,  present  in  recombinant  protein  with  the
already  mentioned  resin.  Basically,  the  sample  is  added  to  the  column with  the  resin
precharged with nickel ions, in which the proteins of interest containing histidine residues
on its surface will be attached. Proteins not bound to the column will be washed out with
the  wash  buffer,  while  the  protein  of  interest  is  eluted  with  buffer containing  500  mM
Imidazole.

Quantification of recombinant proteins

Quantification of purified proteins will be obtained via the Enzyme Linked Immunosorbent
Assay (ELISA). Thus 200 μL of sample are incubated in 96-well plates at 37 °C for 30 min,
then the solutions are removed, blocked in 5% solution of skimmed milk and the wells are
washed 3 times with TBS-T (Tris-buffered saline with Tween 20 detergent) . Then, 200 μL/
well  of  TBS-T solution of  monoclonal  mouse anti-His  is  added and incubated at  room
temperature for  2 h and washed as described above.  A new TBS-T solution with anti-
mouse monoclonal antibody conjugated with alkaline phosphatase is added, incubated at
room temperature for 2 h and washed 3 times with TBS-T for 10 min. For the development,
a freshly prepared solution of p-nitrophenyl phosphate is added and incubated in the wells
for 30 min, and the plate is subsequently read in a plate reader at 405 nm.

Data analysis

Results will be evaluated by analysis of variation (ANOVA) performed in Statistica software
10. Statistical significance will be evaluated by estimating the descriptive level (p) and the
results will be considered statistically significant at p < 0.05 (confidence level of 95%) .The
methods  described  above  are  shown  in  the  flowchart  in  Fig.  4  and  the  execution
chronogram in Table 2.

Month 1 st 2 nd 3 rd 4 th 5 th 

Plasmid construction X

Chlamydomonas reinhardtii transformation X X

Transformed strains evaluation X X X X

Cob polymerization evaluation X X

Results analysis X X X X X

Wiki development X

Table 2. 

Chronogram of execution
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Figure 4. 

Experimental  Flowchart.  (A)  Wild  Cells  incubated  with  built  vectors.  (B)  Wild-cell
transformation by electroporation. (C) Selection of mutants resistant to Zeocin. (D) Screening
of antibiotic resistant cells by PCR. (E) Cultivation of PCR positive cells. (F) Fractions to be
tested for the presence of recombinant proteins. (G) Detection of recombinant proteins present
in the fractions by Western Blot. (H) Protein Purification. (I) Quantification via ELISA. (J) Spider
silk polymerization reaction.
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