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Executive summary

The proposed research develops new computational tools to identify, diagnose, and predict
treatment outcome for different mental illnesses. The research will be applied first to major
depressive disorder, which affects millions of Americans, but is intended to be applied to
any mental illness, such as Alzheimer’s disease, bipolar disorder, schizophrenia – indeed
to  analyze  differences  in  brain  structure,  activity,  or  connectivity  between  any  two
populations.
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Specific research plan

Specific aims

There is a dire need for biomarkers to identify, diagnose, and predict treatment outcome for
mental  disorders  [Insel  and  Cuthbert  2009].  Whereas  neuroimaging  capabilities  have
grown and computational tools for processing these data have become more sophisticated,
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comparisons  across  groups  of  patients  and  human subjects  resort  to  overly  simplistic
representations of brain image data, resulting in simplistic biomarkers. The goal of  this
proposal  is  to  create  network  analysis  tools  for  multimodal  brain  image  data  to  find
biomarkers of mental disorders. The specific aims to achieve this goal correspond to three
phases over the two-year period:

1. Create software framework for graph-based encoding of multimodal neuroimaging
data. During this phase we will develop an open-source, well-documented software
package  for  constructing  and  analyzing  graph  representations  of  structural,
functional, and diffusion tensor magnetic resonance imaging (MRI, fMRI, and DTI)
data.

2. Quantify and compare graphs using “neural signatures.” In the second phase of this
project, we will apply graph metrics and network analysis tools to extract a set of
network characteristics for each individual. This set will comprise a neural signature
for  that  individual.  We  will  quantify  and  compare  these  neural  signatures  by
computing  network  analysis  metrics  on  them,  and  validate  this  approach  by
classifying  data  from  publicly  available  sources.  In  particular,  we  will  use
neuroimaging,  demographic  and  behavioral  data  from  the  International
Neuroimaging Data-sharing Initiative (INDI), which contains datasets from several
neurologically  disordered  populations.  Once  developed,  we  will  engage  the
neuroimaging community  to  test  our  software  on their  own datasets  during  the
remainder of the project period.

3. Evaluate neurosignatures as biomarkers for diagnosis and prediction of treatment
outcome. In the final phase of this proposal, we will apply pattern classification and
regression techniques to identify clinically relevant biomarkers and predict course of
illness (e.g., remitter/non-remitter) in the neural signatures in our own datasets, with
the long-term goal of personalizing treatment using these biomarkers.

We believe this proposal to be significant because it will provide a means of computing
comparisons across rich representations of brain image data and will attempt to diagnose
and  predict  successful  treatment  options  for  individuals  with  mental  disorders.  This
proposal is innovative because it will introduce formidable methods from graph theory and
social network analysis to clinical brain research. Furthermore, this project will result in a
general, open-source computational framework that anybody will be able to use with their
own  datasets,  thus  accelerating  the  rate  at  which  various  neurological  disorders  are
diagnosed and treated.

Research strategy

1 Background and Significance

Diagnosis of mental disorders and prediction of treatment outcome suffers from a dearth of
reliable biomarkers [Insel and Cuthbert 2009]. The importance of identifying biomarkers is
reflected by  its  inclusion  in  the  National  Institute  of  Mental  Health’s  (NIMH)  Strategic
Objectives, Strategy 1.3: “Currently, very few biomarkers have been identified for mental
disorders  due  in  part  to  their  complexity  and  an  incomplete  understanding  of  the

2 Klein A, Ghosh S



neurobiological  basis  of  mental  disorders...”  and  Strategy  2.1:  “Broaden  the  study  of
biomarkers and biosignatures of disorders to ... indicate illness onset, progression, relapse,
remission,  and  recovery.”  We  attribute  the  elusiveness  of  biomarkers  to  the  fact  that
traditional  methods  used  to  analyze  brain  image  data  do  not  adequately  reflect  their
complexity.  In  keeping  with  these  NIMH  strategic  objectives,  the  most  significant
contributions we intend to make with the proposed research are to develop alternative
methods  to  overcome  this  complexity  and  identify  biomarkers  of  mental  disorders,
determine the range of variation of these biomarkers, and to use them to try and diagnose
individuals and predict treatment outcome. In the following sections we: 1) motivate the
need for biomarkers of mental illness; 2) expose the need for better image analysis tools
for  deriving  biomarkers;  and  3)  introduce  graph  theoretical  methods  that  provide  a
mathematically rigorous approach to analyze and mine complex networks for biomarkers.

1.1 Biomarkers and mental disorders

The  psychiatry  literature  contends  that  fundamental  variation  exists  within  current
psychiatric disease categories at all levels (genetic, neurobiological, phenotypic, response
to  treatment).  A  proper  understanding  of  this  variation  is  essential  for  characterizing
etiologies  and  enhancing  treatments  for  these  diseases.  This  idea  is  captured  in  the
concept  of  personalized  medicine,  which  has  often  focused  on  genetic  variation  as  a
potential  predictor  of  treatment  outcome.  Neuroimaging  measures  may  also  provide
important indices of patient variation because psychiatric diseases are understood as brain
disorders,  and  brain  structure  and  function  reflect  both  genetic  and  environmental
influences on current behavior.

A range of studies have shown that biomarkers predict prognoses among patients with
behavioral disorders, and often more accurately than current behavioral instruments, such
as widely used scales and structured interviews. Neuroimaging findings have predicted
recovery from depression 8 months later [Canli et al. 2005], relapse in methamphetamine
dependence [Paulus et al. 2005], onset of psychosis in at-risk individuals [Koutsouleris et
al. 2009, Whalley et al. 2006], response to drug treatment for depression [Chen et al. 2007,
Fu et al. 2007] and anxiety [Nitschke et al. 2009] and for cognitive behavioral therapy (CBT)
in schizophrenia [Kumari et al. 2009]. Evoked-response potentials measured in newborns
[Molfese et al. 2001] and pre-reading children with familial risk of dyslexia [Maurer et al.
2009] predicted language and reading scores  years  later.  Whereas multiple  behavioral
tests of reading and language were at chance in predicting reading gains among dyslexic
children over the next 2.5 years, fMRI patterns of activation were 92% accurate [Hoeft et al.
2007].  We  hypothesize  that  biomarkers  and  biomarker-based  prognosis  could  be  a
practical near-term translation of neuroimaging to clinical application.

To demonstrate the potential of biomarkers for prediction of treatment response, Dr. Ghosh
analyzed pretreatment MRI and fMRI data from 30 patients with SAD who later underwent
CBT (data collected by Dr. John Gabrieli - MIT, Dr. Mark Pollack - MGH and Dr. Steven
Hoffman - BU). SAD is one of the most common psychiatric conditions in the United States.
The two gold-standard treatments for SAD are CBT and pharmacotherapy, and are only
moderately  effective  compared  to  placebo.  A  large  proportion  of  patients  remain
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symptomatic after an initial intervention, and no reliable predictor of treatment response
has been identified. During fMRI, subjects viewed pictures of faces (angry or neutral) or
scenes (emotional  or neutral)  that were matched for valence and arousal  to the faces.
Preliminary  analyses  indicated  positive  correlation  between  changes  on  the  Liebovitz
Social Anxiety Scale (LSAS) and the response to angry faces in regions of the higher-order
visual  cortex  located  on  the  fusiform and  the  parahippocampal  gyri.  A  cross-validated
prediction  model  yielded  a  strong  correlation  (r=0.8)  between  actual  and  predicted
treatment response using data from these functional activations together with SPM-based
VBM analysis of gray matter density in frontal and parietal regions and the pre-treatment
LSAS  score.  Comparatively,  the  pre-treatment  LSAS  score  alone  is  a  much  weaker
predictor (r=0.14). These results demonstrate the potential for multimodal neuroimaging to
guide clinical decisions that maximize the expected outcome from treatment interventions.

1.2 The need for better analysis tools

Advances in neuroimaging have opened up tremendous stores of rich, multimodal data
from which biomarkers may be drawn. Multimodal data include structural, functional, and
behavioral  data  from individual  subjects,  such  as:  magnetic  resonance  imaging  (MRI),
diffusion tensor  imaging (DTI),  and task-based and resting-state functional  MRI  (fMRI).
These data sets and associated tools for efficient representation, manipulation and analysis
will  help provide clarification on observed inconsistences across current studies. “...  for
example, clustering is reportedly increased in the structural networks but decreased in the
functional  networks  of  patients  with  AD...  Some of  these  differences  may  perhaps  be
resolved  by  studies  combining  network  measurements  on  structural  and  functional
neuroimaging data acquired on the same patients.” [Bullmore and Sporns 2009].

Traditional neuroimaging data analysis approaches typically rely on correlational paradigms
and group activation maps. More recent work has attempted to characterize connectivity
between  regions  either  through  structural  equation  modeling  or  functional  connectivity
networks. However, neither of these approaches handle multimodal data effectively. This
has  led  to in-house  software  packages  that  aggregate  information  from structural  and
functional data in order to perform data maining or prediction. In order to break away from
this mold and have comparable results across studies, it is important to have tools that
allow users  to  efficiently  integrate  and  analyze  multimodal  information.  Dr.  Ghosh  has
developed a framework (see http://nipy.org/nipype) that allows optimal analysis workflows
using existing software, but there is still a need for a richer framework for data mining and
prediction.

1.3 Graph theoretical methods and network analysis metrics

The difficulty with integrating data from multiple modalities is that it is computationally very
demanding  to  analyze,  and  it  is  extremely  difficult  to  conceptualize  and  visualize  the
relationships between objects  in  the data.  Graph theory,  a  major  area of  mathematics
concerned with graphs, is the field of mathematics to model relations between objects.
Graphs are also a natural way to represent a connected network structure such as a brain
and to quantify aspects such as similarity, hierarchy and network efficiency (Fig. 1).
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Only  recently  has  neuroscience  broached  the  subject  of  using  graphs  to  characterize
properties of functional imaging data [Thirion et al. 2006, Bullmore and Sporns 2009]. In a
recent  review paper,  Bullmore  and Sporns  (2009)  state  that  “methodological  advances
allow us to quantify other topological properties of complex systems — such as modularity,
hierarchy,  centrality  and  the  distribution  of  network  hubs.”  While  analysis  of  efficient
connectivity  of  networks  (e.g.,  “small-worldness”) have  become  popular,  Bullmore  and
Sporns  point  out  that  “Most  graph  theoretical  network  studies  to  date  have  used
symmetrical  measures  of  statistical  association  or  functional  connectivity  —  such  as
correlations,  coherence and mutual  information — to construct  undirected graphs.  This
approach could be generalized to consider asymmetrical measures of causal association
or effective connectivity — such as Granger causal or dynamic causal model coefficients
— to construct directed graphs. It  is also possible to avoid the thresholding step ...  by
analysing weighted graphs that contain more information than the simpler unweighted and
undirected graphs that  have been the focus of  attention to  date.”  However,  no current
toolbox, including the one provided by the authors, captures these concepts.

Graphs provide an intuitive representation for  each of  the multimodal  data types (MRI,
fMRI, DTI) considered in this proposal. Furthermore, graphs can easily be transformed into
adjacency matrices lending themselves to a whole assortment of linear algebra methods.
In a recent book, Grady and Polimeni [Grady and Polimeni 2010] describe discrete calculus
on  graphs.  The  combination  of  discrete  calculus,  matrix  algebra  and  faster  hardware
provides extremely powerful  computational  tools  for  the analysis  of  brain structure and
function. The ability to perform relatively efficient computations on graphs was not available
even a few years back.

 
Figure 1. 

Examples of graph-based representations of scientific data among hundreds on the www.visu
alcomplexity.com website (categories on the site include biology, food webs and semantic,
social, and knowledge networks). Lower left images of DTI, connectome, and network hubs
are from Olaf Sporns (2010, Scholarpedia, 5(2):5584).
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2 Innovation

The overall aim of the proposed research is to provide graph-based network analysis tools
that help diagnose and predict treatment outcome of mental disorders. This is unique on
several fronts:

1. Represent  multimodal  data  in  a  computationally  addressable  structure  (i.e.,  a
graph).

2. Develop new tools in network analysis. This work will provide the first graph-based
brain  network  analysis  software  package  that  combines  graph-theoretical
representation  of  multimodal  imaging  data,  discrete  calculus  and  pattern
classification approaches.

3. Move away from group-based studies and focus on individual variability. Current
approaches to comparing brain images across subjects and across modalities rely
almost ubiquitously on image registration to establish anatomical correspondence.
Although functional  ROI-based methods are emerging as an alternative to such
registration, these capture very limited task-specific notions of correspondence. Our
proposed  software  will  move  from  macro-anatomy  and  functional  blob-based
comparisons towards network-based correspondences across individuals.

4. Predict treatment outcome and diagnosis (e.g. graph similarity). This will be the first
attempt to diagnose and predict recovery in major depressive disorder (MDD) using
DTI,  MPRAGE and  fMRI  information.  If  successful,  it  will  open  up  the  field  of
personalized medicine for MDD.

3 Approach

In the field of neuroimaging, most of the focus on graph-based computation has emerged
in response to resting-state and other functional connectivity studies [Bullmore and Sporns
2009]. Graph-based representation has the potential to capture important characteristics
from other modalities such as diffusion data. However, as stated earlier, a comprehensive
toolsuite  for  graph-based  representation  and  analysis  of  multimodal  imaging  data  is
lacking. The primary aim of this project is to create such a framework in order to capture
distinguishing neural characteristics or “signatures” of individuals from their structural and
functional data.

3.1 Create software framework for graph-based encoding of multimodal
neuroimaging data

The brain, by its nature, lends itself to a graph-based representation. However, the key to a
useful graph representation is a prudent choice of features embedded in vertices [Zalesky
et al. 2010] and the information encoded in the edges. During this first phase we will code
several feature extraction algorithms. The goal is to be exhaustive without being redundant,
as different combinations of features may encode differential characteristics of neurological
disorders (Fig. 2).
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Vertices

We  will  automatically  extract  features  from  brain  image  data  and  represent  them  as
vertices. Each vertex can have multiple quantities associated with it. For example, any MRI
feature  could  have an  associated  average measure  of  cortical  surface  curvature,  gray
matter  thickness,  etc.  We will  experiment  with  the following features to  determine how
consistently they can be extracted and how robust their correspondence is across brains:

• MRI:  Scale  Invariant  Feature  Transform (SIFT)  points  [Lowe 1999,  Lowe 2004,
Toews  2009],  sulcal  pits  [Im  et  al.  2010,  Lohmann  et  al.  2008],  sulcal  fundi
[Rottenberg et al. 2007, Li et al. 2008], sulcal ribbons [Cointepas et al. 2001], sulcal
folds [Cointepas et al. 2001, Dickson et al. 2001, Fischl et al. 1999], sulcal basins
[Rettmann et al. 2002, Lohmann and Cramon 2000], and manually labeled regions

• fMRI: “blobs” of activity and functional connectivity clusters
• DTI:  whole-brain  network  hubs  [Sporns  et  al.  2007,  Wedeen  et  al.  2008]  and

clusters of voxels within gray matter that generate collateral tracts

Edges

We  will  automatically  compute  relationships  among  the  vertices  and  represent  these
relationships as edges in our brain graphs. The vertices and edges will be computed from
within the same type of image as well as from different types of images. For example, we
will  connect MRI sulcal  pits with DTI tracts (Fig.  3b),  connect DTI-based network hubs
using functional connectivity, etc. Example relationships that we will compute include:

 
Figure 2. 

Examples of automatically extracted features (MRI)
(a) Example structural features (left lateral views of volumes, surfaces, curves, and points)
(b)  Schematic  feature  hierarchy:  3-D  gyrii  surround  a  2-D  sulcal  ribbon  with  1-D  fundus
containing 0-D pits
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• MRI: physical path connecting two vertices
• fMRI: functional connectivity between vertices
• DTI: structural connections based on tractography

Network architecture based on sulcal features

We have automatically extracted SIFT points, sulcal pits, and sulcal fundi from patients with
MDD and from controls, computed structural connections between these features using
DTI probabilistic tractography (using FSL’s probtractx tool [Behrens et al. 2007]), and have
demonstrated that we are able to construct network representations from these connected
features using NetworkX. For example, in Figure 3b, the vertices represent sulcal pits [Im
et  al.  2010]  and  each  edge  indicates  a  DTI  connection  probability  greater  than  0.01
between  two  vertices.  We  are  currently  evaluating  standard  social  network  analysis
measures such as those listed in (3.2) to compare graphs from individuals with and without
MDD and from remitter vs. non-remitter subjects within the MDD subject pool (Fig. 3).

3.2 Quantify and compare graphs using “neural signatures”

We will  use the Python library NetworkX to construct our graphs from the vertices and
edges  computed  above  and  compute  network  analysis  metrics  on  these  structures.
NetworkX provides a set of functions to quantify graphs for comparison and prediction.
Among the metrics that we will evaluate which are relevant to brain architectures are the
following:

 
Figure 3. 

Example of a graph-based representation of MRI and DTI features
(a) A gray/white matter surface (left lateral view) with (visible) sulcal pits highlighted. These
features go by different names (sulcal roots, buried gyrii, annectant gyrii, plis de passage) and
may be well conserved structures formed early in development.
(b) DTI connectivity graph computed on the same patient with depression as on the left panel.
Vertices represent automatically extracted sulcal pits and each edge indicates a connection
probability greater than 0.01 between two vertices.
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1. Eccentricity difference: The minimum (radius) and maximum (diameter) eccentricity
is a measure of how close or how far vertices are to each other in a graph. For
example, if vertices and edges represent functional regions and their connectivity,
then low differences between minimum and maximum eccentricity would mean that
the graph is strongly connected.

2. Clique-set: A clique is a subgraph containing vertices that connect to each other.
For example, if a graph contains edges that represent functional connectivity, then
cliques from this graph would represent brain regions that behave like each other.
The  set  of  3-vertex  or  higher  cliques  from  such  graphs  can  thus  represent
functionally similar networks.

3. Centrality of weighted graphs: Centrality quantifies the extent to which a node or
vertex  is  in  the  center  of  things  (e.g.,  highly  connected  to  important  nodes).
However, weighted graphs are more suited for representing brain features where
the edges are often weighted by strength of connectivity or correlation. Centrality in
weighted graphs has until  recently evaded quantification. Opsahl and colleagues
[Agneessens et al. 2010] have demonstrated how this can be calculated for social
networks.

4. k-core decomposition set: This operation defines subgraphs where every vertex has
degree of at least k. This measure can be used to study the clustering of graphs
and therefore  break  down whole-brain  activation  or  structures  into  manageable
subgraphs for comparison.

These metrics represent some of the network characteristics of an individual’s brain. We
will  test  the discriminability  of  the different  metrics on our  data using recursive feature
elimination. The most discriminable metrics will be collated into a vector of numbers to form
the  “neural  signature”  of  macroanatomical  structure,  function  and their  connections  for
each individual, which may be quantified and compared against other individuals. We will
determine the variation of these neural signatures by analyzing data from publicly available
sources, such as the new International Neuroimaging Data-sharing Initiative (INDI), which
contains multimodal datasets from several neurologically disordered populations.

3.3 Explore and quantify stable biomarkers for diagnosis and prediction of treatment
outcome

The neural signatures above will then be used as input features for pattern classification (to
predict diagnosis and remission) and regression (to predict treatment outcome). We will
use the Python library PyMVPA for pattern classification. In addition, we expect our data to
be noisy, and will  therefore invoke methods from discrete calculus [Grady and Polimeni
2010] to filter our graphs, penalize outliers, and aid in clustering and analysis.

The tools we will develop to identify biomarkers are intended to be applied to any mental
illness, such as Alzheimer’s disease, bipolar disorder, schizophrenia – indeed to analyze
differences in brain activity between any two populations. However, we have targeted MDD
and  SAD  to  guide  development  and  conduct  validation  of  our  methods.  We  will  be
processing SAD data (as described in (1.1)), and MDD data from two different grants for
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which our Co-Investigator Ramin Parsey, a leading researcher of depression, is a P.I. (Arno
Klein (P.I.) is also a Co-Investigator on the second):

• “Biological Predictors of Response to Antidepressants” (MH074813)
• “Biosignature Discovery for Personalized Treatment of Depression”

(1U01MH092250-01)

We will develop our methods on data from the first grant to determine the range of variation
of our topological biomarkers, and will validate on some of the data from the second (U01)
grant to try and diagnose individuals with MDD and predict treatment outcome based on
remitter/nonremitter data. The U01 is a large, multi-site project acquiring multimodal brain
imaging data from 400 individuals, specifically designed to make such data available to
establish biomarkers for MDD. We will make use of the structural, functional and diffusion
tensor 3.0T MRI data acquired from at least 40 of the U01 subjects that will be available
within the next year:

• Structural 3D axial MPRAGE images (TE: 3.29 ms, TR: 2200 ms, Flip angle 9°,
Field  of  view:  256x192 mm,  Slice  thickness:  1  mm,  Matrix:  256x256,  192
continuous slices, 7:02 min)

• 4  fMRI  tasks  (emotional  conflict,  reward  processing,  PASL,  and  resting-state
connectivity  acquisition):  39  axial  slices  (3.1mm  thick,  TR/TE=2000/28msec,
FOV=205x205cm, matrix=64x64; Flip angle=90°)

• DTI  using  echo  planar  imaging  (voxel  size:  2x2x2mm,  61  and  25  non-colinear
directions; b-value=1000s/mm2)

If successful, this graph computational framework could be used to incorporate data from
other  neuroimaging  modalities,  such  as  electroencephalography,
magnetoencephalography,  positron  emission  tomography,  angiography,  and  functional
near-infrared  spectroscopy.  And  whereas  the  focus  in  the  present  proposal  is  on
macroscopic  neuroimaging data,  the framework could  easily  be applied to  microscopic
(histological) data, and indeed to nonbrain medical imaging data as well.

3.4 Conclusion and timeline

In the beginning of this proposal, we described the dire need for effective biomarkers of
mental  illness.  We  then  presented  formidable  new  computational  tools  that  can  find
relationships  in  complex  data  –  tools  that  could  overcome  shortcomings  of  present
methods applied to brain image data. After outlining our methodological innovations, we
described our  research approach to  find biomarkers  of,  for  example,  major  depressive
disorder.

Our timeline will be as follows:

Year  1:  Develop  software  to  extract  features  within  individuals  to  build  graphs.  Create
software to compute biomarkers on the graph-based framework.
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Year 2: Determine the biomarkers’ range of variation. Test their validity on clinical data.
Refine, test, and completely document the software for public distribution.

Resource sharing plan

1 Multiple Project Directors/Principal Investigators (PDs/PIs) Leadership Plan

1.1 Rationale for the multiple PIs

The project proposes multiple Principal Investigators to capitalize on the specific expertise
of Dr. Klein and Dr. Ghosh. Because it proposes to develop graph theoretical methods to
establish  biomarkers  based  on  automated  extraction  and  processing  of  features  and
regions from multimodal brain image data, it is essential to have significant expertise in
graph-based representations and in processing of multimodal brain image data (Ghosh) as
well as expertise in brain image processing and region and feature extraction (Klein). Dr.
Ghosh  and  Dr.  Klein  have  collaborated  for  over  five  years  and  do  not  anticipate  any
conflicts,  but  should  a  conflict  arise,  they intend to  resolve it  by  deferring to  their  Co-
Investigator Dr. Parsey.

1.2 Expertise of Principal Investigators

Dr. Arno Klein is an Assistant Professor of Clinical Neurobiology at Columbia University. Dr.
Klein’s research focuses on brain imaging, image processing, and information visualization.
Dr. Klein received a B.S. in Biopsychology from the University of Michigan in 1993, an M.S.
in Media Arts and Sciences from M.I.T. in 1996, and a Ph.D. in Neuroscience from the
Weill Medical College of Cornell University in 2004. Prior to his appointment at Columbia
University,  Dr.  Klein worked as an Information Synthesis Theorist  and Program Analyst
specializing in complex data visualization at the Parsons Institute for Information Mapping
at  the  New  School  in  New  York.  Dr.  Klein  has  recently  been  publishing  the  largest
registration  and  brain  extraction  algorithm  evaluation  studies  ever  conducted.  He  is
presently  the  Principal  Investigator  on a  3-year  NIMH-funded  R01 titled  “Mindboggling
Shape Analysis and Identification.” His present involvement in the largest manual brain
labeling  effort  ever  undertaken  (www.braincolor.org)  and  experience  developing  fully
automated feature matching and brain anatomy labeling software (www.mindboggle.info) is
evidence that he is well qualified to take on the responsibility of defining the anatomical
regions  and  multimodal  features  for  the  proposal.  Dr.  Klein  will  be  supervising  DTI
postprocessing as a Co-Investigator on a large, multi-site grant (“Biosignature Discovery
For Personalized Treatment Of Depression” (1U01MH092250-01), P.I.: Ramin Parsey), and
so he is in the best position to spearhead the DTI component of the proposed research,
which will  make use of  the same data.  Being an avid  programmer,  he will  be able  to
contribute to the software development of the project.

Dr. Ghosh is a research scientist at the Research Laboratory of Electronics at MIT and a
faculty member of the Speech and Hearing Biosciences and Technology program within
the Harvard-MIT division of Health Sciences and Technology. He has extensive experience
with functional and structural neuroimaging, signal processing and software development.
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He has developed state-of-the-art tools for real-time imaging and analysis of neuroimaging
data. As P.I. of an R03 from NIBIB he initiated the development of a Python-based, open-
source, multi-institution software project aimed at improving interoperability among existing
imaging analysis software packages (http://nipy.org/nipype/). That project makes use of the
NetworkX Python library for creating manipulating, and studying the structure, dynamics,
and functions of complex networks. His expertise in the use of this library will be essential
to  the proposed project.  His  current  research focus is  on utilizing pattern classification
approaches for diagnosis and prediction of treatment outcome of neurological disorders
(social anxiety disorder,

Project

There is a dire need for biomarkers to identify, diagnose, and predict treatment outcome for
mental disorders. Whereas neuroimaging capabilities have grown and computational tools
for processing these data have become more sophisticated, comparisons across groups of
patients and human subjects resort to overly simplistic representations of brain image data,
resulting in simplistic biomarkers. The goal of this proposal is to create network analysis
tools for multimodal brain image data to find biomarkers of mental disorders. The specific
aims to achieve this goal are the following:

1. Create software framework for graph-based encoding of multimodal neuroimaging
data.  We  will  develop  an  open-source,  well-documented  software  package  for
constructing  and  analyzing  graph  representations  of  structural,  functional,  and
diffusion tensor magnetic resonance imaging (MRI, fMRI, and DTI) data.

2. Quantify  and  compare  graphs  using  “neural  signatures.”  We  will  apply  graph
metrics and network analysis tools to extract a set of network characteristics for
each individual. This set will comprise a neural signature for that individual, which
may be quantified and compared against other individuals.

3. Evaluate neurosignatures as biomarkers for diagnosis and prediction of treatment
outcome. We will apply pattern classification and regression techniques to identify
clinically relevant biomarkers and predict course of illness.

We believe this proposal to be significant because it will provide a means of computing
comparisons across rich representations of brain image data and will attempt to diagnose
and  predict  successful  treatment  options  for  individuals  with  mental  disorders.  This
proposal is innovative because it will introduce formidable methods from graph theory and
social network analysis to clinical brain research. Furthermore, this project will result in a
general, open-source computational framework that anybody will be able to use with their
own  datasets,  thus  accelerating  the  rate  at  which  various  neurological  disorders  are
diagnosed and treated.
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Call

R21 (PA-10-069)

Hosting institution

Columbia University

Ethics and security

Only publicly available data will be used.

Author contributions

AK and SG authored this proposal.
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