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Abstract

This report  reviews the current state-of-the-art  applied approaches on automated tools,

services and workflows for extracting information from images of natural history specimens

and  their  labels.  We  consider  the  potential  for  repurposing  existing  tools,  including

workflow management  systems;  and  areas  where  more  development  is  required.  This

paper was written as part of the SYNTHESYS+ project for software development teams

and  informatics  teams  working  on  new  software-based  approaches  to  improve  mass

digitisation of natural history specimens.
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1. Introduction

A  key  limiting  factor  in  organising  and  using  information  from  global  natural  history

specimens is making that information structured and computable. As of 2020 at least 85%

of available specimen information currently resides on labels attached to specimens or in

physical  registers  and  is  not  digitised  or  publicly  available*1.  Institutional  digitisation

workflows have tended to focus on processing individual specimens and their metadata

one-by-one rather than developing large-scale software-based tools to automate capturing

computable  data  about  multiple  specimens  at  once.  The  SYNTHESYS+  project  is

addressing  this  gap  using  technologies  developed  to  harvest,  organise,  analyse  and

enhance information from other sources (such as books, photographs and maps), offering

the prospect of greatly accelerated data capture through a Specimen Data Refinery (Smith

et al. 2019).

The objective of the Specimen Data Refinery (SDR) is to combine these technologies into

a cloud-based platform for processing specimen images and their labels en masse in order

to extract essential data efficiently and effectively, according to standard best practices.

As part of this process a workflow was developed, illustrating the steps required to fully

automate the procedure from image capture to a full specimen dataset (Fig. 1). There are

two core components that must be considered when building a workflow. First, the tools

available to complete the individual tasks required, such as tools that can execute image

segmentation,  or  tools  that  can  conduct  automated  text  extraction.  Research  and

development has been conducted to varying degrees on tools and methods for executing

these steps.  Most  of  this  research and development  has  been conducted in  isolation,

addressing one step in the process but not the workflow in its entirety. In developing a

Specimen Data Refinery, there are opportunities to take advantage of pre-existing research

and development on some tools but there are also significant gaps which need to be filled

in order to deliver an end-to-end workflow.

A glossary of terms is provided at the end of this report to assist the reader on unfamiliar or

specialised terminology (see Glossary).

A gap analysis was conducted, taking into account the maturity of the available tools for

each phase in the workflow (Section 3).

The second component of building an automated workflow is developing the links between

each tool - the environment in which the entire process is executed and the technology that

executes the process. This is a different set of platforms and services that will  connect
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what are currently  various disparate pieces into a whole working system. It  requires a

technology stack that is reliable, sustainable and cost-effective. Following the gap analysis

on  tools,  an  initial  assessment  was  conducted  on  the  technology  stack  required  to

assemble these tools together into an automated workflow (Section 4).

1.1 Scope

The scope of this work was to evaluate existing platforms based on their approach and

service offering, and to identify sources of data including reference/ground truth/training

datasets. This analysis also identified missing tools/service and datasets.

This report does not include: technical evaluation of existing tools, service registries and

platform-based approaches; evaluation and recommendations on using,  integrating and

merging  partial  (prior/previously  created)  specimen data;  assessment  of  hardware  and

physical  infrastructure requirements;  assessment for the potential  to use pan-European

Collaborative Data Infrastructure; creation of reference/ground truth/training datasets.

1.1.1 Machine Learning and Training Data Sets

The tools evaluated in this landscape analysis include both unsupervised and supervised

machine learning approaches, with a key difference being that unsupervised methods do

 
Figure 1.  

An overview of potential Specimen Data Refinery workflows based on image inputs and their

derivatives, datasets and services.
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not  require  a  training  dataset.  For  example,  some  image  segmentation  tools  are

unsupervised  -  their  methods  for  identifying  parts  of  an  image  include  thresholding,

contouring,  clustering,  etc  and  how these  are  applied  to  segment  an  image does  not

change,  regardless  of  the  number  of  images  processed.  In  comparison,  other

segmentation  approaches  like  U-Nets  use  supervised  learning  and  require  a  ‘training

period’ for image recognition when they are ‘taught’ to identify specific items in an image

based  on  a  ground-truth  set  of  images  (Ronneberger  et  al.  2015).  Usually,  the  more

images in  a  training dataset  for  supervised learning methods,  the more accurate  their

recognition capabilities should become.

Many of the machine learning tools included in this study are specific to natural history

collections and, in many cases, are designed for specific taxa. Thus, these tools have been

trained and tested with species datasets. In order to gain a comprehensive picture of the

tools available, software not designed specifically for scientific collections or with limited

testing on natural history collections was also included.

It was not within the scope of this work to develop new training data sets. However, in

identifying tools that have not been tested in a natural  history context,  we do highlight

where the construction and application of new training datasets needs to be prioritised.

Ground  truth  datasets  will  become  increasingly  important  for  natural  history  data,

especially as the variety and specificity of segmentation become more complex.

1.1.2 Prior Research on Automation

A collection of research has previously been conducted in the EC funded SYNTHESYS3

and ICEDIG projects on the capabilities of automation tools in digitisation. For the former,

Haston et al. (2015) conducted a series of tests on image segmentation; OCR of typed and

printed  text;  handwritten  text  recognition;  and  natural  language  processing  (NLP)  for

automatic metadata capture. Further research has also been conducted in ICEDIG on label

and transcription automation capabilities. Tests were conducted on methods for automated

text digitisation and entity recognition within ICEDIG, with recommendations on specific

workflows and OCR tools (Owen et al. 2019).

1.1.3 Crowdsourcing and Human-in-the-Loop

As the Specimen Data Refinery is intended to integrate both artificial intelligence (AI) and

human-in-the-loop  (HitL)  approaches  to  extraction  and  annotation, citizen  science

platforms  such  as  plant  identification  apps  and  volunteer  transcription  services  were

included in the initial research. However, the primary focus of this landscape analysis is on

AI platforms as these hold the greatest untapped potential for mass efficiency gains and

centralised workflows.

1.2 Project Context

This report was adapted from a formal Deliverable (D8.1) of the SYNTHESYS+ project that

was  previously  made  available  to  project  partners  and  submitted  to  the  European
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Commission as an internal report. While the differences between these versions are minor

the authors consider this the definitive version of the report.

This paper is  a precursor to the development of  new tools,  services,  workflows and a

formal  registry,  which form the basis of  the next  SDR task (8.2)  in  the SYNTHESYS+

project. We hope this report will be broadly useful for software development teams and

informatics teams outside of the SYNTHESYS+ project working on new software-based

approaches to improve mass digitisation of natural history specimens.

2. Methodology

In order to collect an aggregated list of tools to evaluate, the SYNTHESYS+ partners from

partner institutions were invited to contribute known tools, methods, resources and pilot

projects (Suppl. material 1). Over the course of six months, various people added to the

list, made updates, cited sources and contributed new tools. Each tool was categorised

based on their place in the data refinery workflow. Where available, the data added for

each tool included:

• Brief service description

• Delivery platform (eg. web application, software library, R package, etc.)

• Associated academic papers

• Known test pilots

• Cost (where applicable)

• Input/Output formats

• License

In total, 76 tools, methods and resources were collected.

After the aggregation phase was complete, the list was reviewed in its entirety. Each tool

and  resource  was  mapped onto  the  data  refinery  workflow,  in  order  to  assess  where

reusable resources are available, and where there are major gaps or potential risks. Each

step in the workflow was graded according to a traffic-light system - green for the existence

of a variety of resources that could be repurposed, amber for the existence of resources

with limited reuse potential, and red for a major gap where either no resource exists or

there is no reuse potential. A number of steps in the workflow (identifier verification, trait

extraction and analytics) had no associated tools submitted and were marked as grey in

the workflow map. The workflow map was then distributed to the contributing partners to

identify any further gaps or missing areas.

Upon  completion  of  the  gap  analysis,  an  initial  assessment  was  conducted  on  the

technology stack available to compile each of the tools together into a workflow. A high-

level consultation was conducted with a computer science team at a partner institution with

prior  experience  developing  similar  complex  human-in-the-loop  workflows.  Their

recommendations have been documented for further study and research in the next phase.
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3. Gap Analysis

This analysis revealed that there are some areas where considerable efforts have been put

towards  developing  a  toolkit,  while  others  have  received  less  efforts  (see  Fig.  2  and

Table 1).

Tool/Service Functionality Traffic-light Status

Image segmentation Green

Feature analysis Red

Colour analysis Amber

Image recognition (object detection) Green

Condition checking Red

Trait extraction Red

 
Figure 2.  

Traffic-light results of gap analysis applied to overall proposed workflow.

 

Table 1. 

Traffic-light (RAG) analysis of tools and services: green = existence of a variety of resources that

could be repurposed; amber = existence of resources with limited reuse potential; red = a major

gap where either no resource exists or there is no reuse potential.
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Tool/Service Functionality Traffic-light Status

Species identification Amber

Handwritten text (handwriting) recognition Amber

OCR of typed or printed text Green

Atomisation, validation and classification Red

Geographic resolution Red

Person resolution Amber

Taxonomic resolution Green

Label (biological) trait extraction Amber

3.1 Image segmentation

Image segmentation involves dividing the pixels of an image into its component parts, such

as separating the specimen itself from the barcode and the label. Image segmentation is a

fundamental  low-level  image  processing  task,  which  faciliates  subsequent  higher-level

tasks on the resulting components,  such as image object detection and recognition. In

addition  to  a  large  suite  of  tools  available  for  batch  photo  editing  (cropping,  resizing,

rotating, etc.), there were three reported tools that could segment an image. scikit-image

(Pandey 2019) is a Python package with a suite of methods for segmenting an image

including thresholding, active contouring, random walkers, etc. ImageSURF is a Java API

and ImageJ2/FIJI plugin  that  segments  with  a  trained classifier  based on annotations.

OpenCV, an open source computer vision and machine learning software library, provides

algorithms to segment images for different programming languages, which is also a useful

tool for image recognition.

There is some overlap between semantic segmentation and object detection (see Section

3.2). Semantic segmentation refers to a type of segmentation where each pixel is labelled

as belonging to a particular class of objects. It  is similar to image object detection and

recognition and goes beyond the individually labelled pixel level to recognise entire objects

in an area. While YOLO V3 is an object detection tool, it has been used to identify and

segment the different objects that are commonly found on herbarium sheets: the pressed

plant specimen, scale bar, stamp, color calibration chart, specimen label, envelope and

barcode (Triki et al. 2020). Semantic segmentation was also used in another study based

on a dataset of 400 images of ferns to train a deep learning algorithm to segment the

image of the specimen from the image background (White et al. 2020). These approaches

could be adapted and reused for general herbarium sheets and generalised for use with

other  specimen  images.  Some  segmentation  models  like  DeepLab and  U-NET have

implementations in PyTorch and may be of potential use in the SDR.

The step was marked as green because there is more than one tool available and each

tool  provides  a  different  method  for  going  about  image  segmentation,  thus  offering  a

variety of options that could be tested based on the needs of the collection’s images. More
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importantly, scikit-image underwent significant testing by the Natural History Museum as

part of the SYNTHESYS3 project (Haston et al. 2015) and YOLO V3 has been trained on

natural history collections by a group of universities and returned accurate results (Triki et

al. 2020).

3.2 Feature analysis, colour analysis and image recognition (object detection)

In the aggregation process,  many tools were listed as feature analysis resources (e.g.

Flavia and LeafProcessor) but were ultimately categorised as species identification tools

because they used some level of feature analysis to identify a specimen (primarily plants).

The only tool used for broader feature analysis in natural history specimens was a set of

prototypes developed in the SYNTHESYS3 project which segments the specimen from the

background of the image by identifying its edges and then, for butterflies and moths only,

takes measurements of the wings (Durrant 2016, Haston et al. 2015). Feature analysis was

marked red because only one tool was available and it is used primarily for only one type

of specimen.

Colour analysis was categorised as amber because there is only one tool available. Image

Quality Assessment, in addition to predicting the technical quality of the image, is able to

group sets of images together based on similar colours. However, other tools used for

image segmentation and recognition, like scikit-image, may be used for this.

Image recognition was categorised as green because there are two well-developed and

heavily-supported resources available. Google Vision comes with enterprise-level support

and longevity and offers toolkits for both non-coders and programmers. OpenCV has a

strong  open-source  development  infrastructure  underneath  it.  Both  can  be  trained  to

recognise items in an image and organise them into pre-set categories.

3.3 Condition checking, image trait extraction and species identification

No tools or resources were submitted for condition checking and this appears to be a major

gap in the workflow. In the context of the SDR this would be a series of varying visual

checks on a natural history specimen that may cover their stability, damage, completeness

and potential for use.

A  majority  of  the  image  trait  extraction  tools  and  resources  developed  have  been  for

biomedical/epidemiological purposes. Trait extraction was marked as red because only two

tools  were  submitted  and  both  are  applicable  only  to  plants.  Plant  Trait  Extraction  is

capable of phenotypic trait extraction but only for a subset of collections (Jin et al. 2019)

and traitEx is able to take measurements but only of leaves (Gaikwad et al. 2019). Pearson

et  al.  2020  describe  a  theoretical  modular  machine  learning  workflow  for  extracting

phenological trait data from herbarium images and a set of potential research usecases.

Species identification, in contrast, has received a tremendous amount of concerted effort,

research  and  R&D.  As  a  result,  numerous  tools  and  methods  have  been  developed

spanning the range of neural network machine learning tools (Wu et al. 2007) to citizen
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science photo apps. However, it was still marked as amber because a majority of those

submitted are either methods that have only been discussed in research papers (Novotný

and Suk 2013; Jamil et al. 2015; Munisami et al. 2015; Şekeroğlu and İnan 2016; Lasseck

2017; Xi et al. 2019) or apps for which data and machine learning quality require further

analysis (iNaturalist 2019). Three out of the remaining four existing tools are related only to

plant identification. So while there is a strong foundation of methodologies from which to

build on, species identification will still require considerable input.

3.4 Optical character recognition of handwritten and printed/typed text

These areas have also been the recipients of considerable research and development.

While Transkribus is the only listed tool  available for  handwritten text  transcription and

analysis, it is supported by EU funding and has been successfully deployed on a collection

of specimens from the Royal Botanic Garden Edinburgh. Transkribus also offers a host of

web and cloud services.

OCR in general was marked green as there are multiple tools available, although ABBYY

is an enterprise-level software that will  likely have cost associated. The Natural History

Museum, London has tested Tesseract 4.1.0 OCR (Tesseract OCR 2019) against the Biodi

versity  Heritage Library (BHL) corpus and achieved comparable results  to  BHL's  OCR

engine (powered by ABBYY FineReader). While Tesseract is also capable of handwritten

text recognition, accuracy with serif and cursive text was poor. Tesseract OCR has been

tested in large scale on the herbarium sheet images in EUDAT pilot Herbadrop project

(EUDAT 2016). Google Vision also provides promising API-based OCR services (Walton et

al. 2020) as does Microsoft's Read API. A number of other tools, including ABBYY Fine

Reader, langid.py (Lui and Baldwin 2012) and Stanford Named Entity Recognizer were

tested as part of the ICEDIG project (Owen et al. 2020).

While yet to be tested, certain handwriting such as the signatures of prolific collectors may

be more reliably identified using image recognition rather than OCR. There may also be

other  repetitive  words  or  phrases,  such  as  name  prefixes and  stamps  indicating

nomenclatural type status, which could be identified in this way.

3.5 Atomization, validation and classification

Many OCR tools are capable of named entity recognition (NER) - the ability to extract

strings of text and thereby break a label into its component parts, such as place names,

person names or taxon names. The main tools - NLTK, spaCy, flair, and Stanford Named

Entity Recognizer - are capable of deep learning so can be trained to recognise specific

strings and categories from a ground truth dataset. These tools have been used to derive

structured data from taxonomic publications (e.g. traits), but still require further research in

the context of natural history collection labels. There are also a couple of tools available for

extracting  ecologically-relevant  terms  from  a  label.  ClearEarth  and  Explorer  of  Taxon

Concepts  are  both  capable  of  identifying  such terms and categorising  (Thessen et  al.

2018,Cui et al. 2016).
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There are also a number of  language detection tools available (Danilak 2014, Lui  and

Baldwin 2012, Padró and Stanilovsky 2012). However, there is still considerable work to be

done on a more efficient method for recognising and resolving the different identification

numbers on a label, such as collector, accession, registration, catalogue, or other numbers.

These can be prevalent in collections, and aid with data linkage and verification. Owen et

al. (2020) demonstrated that both geographic and person information can be accurately

extracted using OCR.

3.6 Geographic resolution, person resolution and taxonomic resolution

Geographic  resolution is  a  task natural  history  collections have struggled to  automate.

There are numerous tools available for general geocoding - MapQuest Geocoding, Google

Geocoding, CartoDB, Pelias. However these tools require a known address, city, country

or  region name in order  to identify  an associated latitude and longitude.  They are not

designed for historical place names and cannot accommodate changing boundaries over

time or  vague or  general  place descriptions.  GEOLocate is  the only  tool  listed that  is

designed specifically to assist in the geographic resolution of natural history collections and

is currently still active. A number of other tools like BioGeomancer (Guralnick et al. 2006)

and R packages like R BIOgeo (Robertson et al. 2016; Robertson 2016) and R GeoNames

(Rowlingson 2019) have also been developed but in some cases are outdated or no longer

available. In the case of BioGeomancer, the code has not been actively developed since

2012.  Further  research  and  resources  will  be  necessary  to  develop  this  part  of  the

workflow.

Person  resolution  was  marked  as  amber  because  Bionomia (formerly  Bloodhound)  is

currently the only tool designed specifically to match a collector with the specimens they

collected.  Numerous  efforts  are  also  underway  to  assign  unique  person  identifiers  to

researchers, present-day and historical. ORCID, ISNI and ResearcherID have databases

of person identification numbers and VIAF combines the person with numerous countries’

national libraries into an aggregated database. In relation to published academic papers,

Elsevier assigns a researcher ID for all authors in its database through Scopus and there

are a number of sites to which researchers can upload their publishing profile.

The  Muséum  national  d'Histoire  naturelle  is  currently  developing  a  Person  Refinery,

expected to be completed by April 2020, which has revealed a number of challenges in

efficiently developing data structures and alignments for person resolution, chief of which is

how  the  various  researcher  ID  systems  can  help  disambiguate  person  names  within

collections and whether there is particular people identifier system which will prove to be

most relevant for all types of collections (Besombes et al. 2019).

Taxonomic name resolution is the most developed. There are many tools available, and

there is an increasing level of integration of tooling into various initiatives. The Catalogue of

Life is an authoritative global species checklist for all life on earth, that is built on 172 global

taxonomic  resources  (Roskov  et  al.  2019).  Amongst  these  resources  are  also  partner

initiatives,  such as  the Integrated Taxonomic  Information System (ITIS)  and the World

Register  of  Marine  Species (WoRMS).  GBIF  has  aggregated  through  an  automated
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process the taxonomic databases of numerous sources, taking the Catalogue of Life as a

starting  point,  for  a  single  entry-point  for  taxonomic  synonym identification  and  name

resolution for living specimens. The GBIF Backbone Taxonomy (GBIF Secretariat 2019)

also includes nomenclatural data sources, such as the International Plant Names Index

(IPNI) and Zoobank, as well as automated feeds of species names in digitized literature

mined by Plazi. In addition, the backbone includes Operational Taxonomic Units consisting

of Barcode Index Numbers from the International Barcode of Life (iBoL) and fungi species

hypotheses from the UNITE community (GBIF Secretariat 2019). GBIF and the Catalogue

of  Life  (CoL)  are  constructing  a  joint  infrastructure  for  names  and  taxonomy,  that  will

include an extended CoL as the replacement of the functionalities of the GBIF Backbone

Taxonomy  into  a  more  open  environment  (Bánki  et  al.  2019).  Several  natural  history

museums are making use of integrated services. As an example, the NHM has developed

a java-based extract, transform and load (ETL) process that utilises the GBIF taxonomic

backbone to resolve names, while still  allowing colleagues with taxonomic expertise to

validate  results  and  adjust  certain  query  parameters  (Vincent  2020).  The  Netherlands

Biodiversity Data Services developed and maintained by Naturalis Biodiversity Center are

making use of the CoL, in addition to the Netherlands Species Register, to validate names

of biological collections. ARISE (Authoritative and Rapid Identification System for Essential

biodiversity information), a new Dutch infrastructure, will integrate services of CoL, GBIF,

and iBOL to validate specimen collections, DNA sequences, images and other information

on taxa (Bánki et al. 2019). In addition to the resources mentioned previously, Fossilworks

is  available  as  a  taxonomic  database  for  paleontological  specimens  and  there  are

numerous other  databases available  specifically  for  plants,  mammals or  other  taxa for

further identification. In addition to these databases, there are also a number of out-of-the-

box tools for  synonym identification and resolution.  Taxize is  an R package developed

specifically  for  this  purpose  (Chamberlain  and  Szöcs  2013)  as  well  as  Taxosaurus,  a

thesaurus for  taxonomic names,  along with  a  number  of  other  resources.  It  has been

demonstrated  that  simple  processing  of  taxon  names  can  considerably  increase  the

matching of names from different sources (Patterson et al. 2016).

Taxonomic name resolution is marked green as there are a number of tools and resources

available, and also the level of integration is relatively well developed. However there are

still  several  challenges.  Taxonomic  gaps  exist,  taxonomic  data  sources  may  portray

alternative classifications, and it is not always clear if datasources have been build on the

same nomenclatural foundation. This may result in a scattered and blurry landscape for

users, but at the same time highlights the importance of both scientific names and taxa

(Remsen  2016).  Work  is  underway  to  develop  a  joint  infrastructure  to  facilitate  the

reconcilliation  of  different  taxonomic  and  nomenclatural  databases,  but  these

discrepancies should be kept in mind in the meantime.

3.7 Label (Biological) Trait Extraction

Biological trait extraction has been largely confined to text mining of literature (Endara et al.

2018;  Gaikwad  et  al.  2019;  Jin  et  al.  2019;  Thessen  et  al.  2018).  However,  while

infrequent, a small number of specimen labels may include trait descriptions. There has
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been a considerable amount of research and development on semantic machine-learning

software for extracting trait descriptions for large sources of text, some of which may be

applied to label text. This category has been marked amber because of three tools specific

to ecological/biodiversity terms that may be utilised or repurposed for specimen labels.

ClearEarth (Thessen et al. 2018) and Explorer of Taxon Concepts (Endara et al. 2018) can

extract ecologically-relevant terms (Jenkins and Thesen 2018) from text for further study.

Phenoscape and the associated SCATE project (Dahdul et al. 2017) connect trait analysis

tools to semantic reasoning tools.

4. Building a Workflow

The Specimen Data Refinery (SDR) aims to take a selection of tools identified above and

package  them  into  a  cohesive  workflow  for  processing  and  analysis.  This  requires  a

technology  stack  that  will  create  the  links  between  different  tools  and  the  operating

environment  in  which  the  workflow  is  executed  and  managed.  While  there  are  many

different technology services available for workflow development, the priority for the SDR

will be to identify a technology stack that contains all of the required functionality, while

being reliable, sustainable and cost-effective.

4.1 Selecting a Human-in-the-Loop Workflow Management Systems

There are many examples in bioinformatics of automated workflows that string together a

collection of tools and execute a series of steps with no intervention required by a user

(Perkel 2019). A Workflow Management System (WfMS) is the software that strings the

tools together. It  designs, executes and monitors a workflow while shielding users from

underlying executional complexities. It  manages code and data access and movement,

logging,  errors,  parameter  configurations  and data  provenance (where,  when and with

what parameters and inputs a task was run) among other tasks (Cohen-Boulakia et al.

2017; Deelman et al. 2017).

There  are  currently  over  280  Workflow  Management  Systems, each  with  their  own

strengths and weaknesses. Typically, they vary on whether they are focused on linking

tools or linking infrastructure layers; whether they are domain-specific or general; and who

they target as their  user-base and the level  of  expertise required.  It  is  not  necessary,

however, to choose only one. Workflow management systems can be combined to develop

custom solutions.

In  addition  to  these  considerations,  the  SDR  has  an  added  layer  of  complexity  not

represented in Fig.  1 because it  will  require human interaction and decision-making at

various steps in the process. For example, the workflow could execute the steps to get an

image to the point where it is ready to be georeferenced, but a user may need to select

which type of  georeferencing algorithm is  most  appropriate for  the label  based on the

locality information within it. This is called a human-in-the-loop (HitL) workflow.
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Therefore,  the  environment  within  which  the  workflow  is  executed  should  support

interactivity, providing a space in which a user can give commands that then dictate the

next  steps  of  the  workflow.  Similar  HitL  workflows  have  been  developed  for  other

biodiversity projects (Mathew et al. 2014) and there are technology services to facilitate

this  type  of  interaction  such  as  OpenRefine which  includes  functionality  for  recording

human interactions so they can be repeated in future runs of the workflow.

Galaxy  is  another  WfMS  designed  specifically  for  bioinformatics  that  offers  HitL

functionality  (Afgan  et  al.  2018).  It  has  been  adopted  by  the  ELIXIR  Research

Infrastructure and EOSC-Life, a cluster of 13 research infrastructures. Galaxy is a widely

used platform with over 100 installations across the world, including those handling images

and biodiversity pipelines, and is also used by the IBISBA1.0 project, part of IBISBA-EU.

4.2 Implementing a standardised workflow language for interoperability

The steps of a workflow (scripts, tools, command-line tools and workflows themselves) are

linked together and executed by the workflow engine within the WfMS. Linking all of these

disparate interfaces, scripts, methods and datasets together requires each step to be in the

same workflow language with interoperable data standards so that they can communicate

consistently with each other.

Different  WfMS typically  have different  language requirements  and protocols,  and limit

interoperability.  Several  attempts have been made to standardise workflow descriptions

and enable  workflow interoperability  between different  systems in  order  to  support  the

long-term preservation of workflows that may outlive any specific WfMS. The Workflow

Description Language and the Common Workflow Language (CWL) (Amstutz et al. 2016;

Khan  et  al.  2019)  are  recent  community  efforts  to  implement  a  standard  language.

OpenAPI and the use of APIs for task execution (e.g. GA4GH Task Execution API and GA4

GH  Workflow  Execution  API)  is  contributing  to  standardised  communication  between

interfaces. The EDAM ontology is another step towards standardising descriptions of the

inputs and outputs between bioinformatics tools.

The  Common  Workflow  Language  is  an  open  standard  for compiling  workflows  and

describing how to run the command line tools  inside them in a way that  makes them

portable and scalable. It is a WfMS-agnostic common language that developers can use to

better document workflows and assist with workflow portability and interoperability when

working  between  different  systems.  The  current  CWL  Standard  (v1.1) provides

authoritative documentation of the execution of CWL documents.

ELIXIR, a sister ESFRI to DiSSCo, has invested in the support of CWL and it is used by

the EU’s BioExcel2 Centre of Excellence for Biomolecular modelling, by the IBISBA ESFRI

for Industrial Biotechnology and by the EOSCLife cluster project. This strong community

and  financial  support  for  the  development  of  CWL  is  indicative  of  its  longevity  and

anticipated  sustainability  which  are  important  factors  when  deciding  which  workflow

language to use in the SDR.
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4.3 Incorporating prior information and the statistical framework

The SDR should not work independently from prior knowledge. Some basic information on

the collection is always known about specimen images before they are fed into the SDR.

These  data  are  generally  known  as  collection  metadata.  These  data  might  be  the

taxonomic scope of the collection (e.g. insects, vascular plants, fungi), geographic scope

(e.g. Belgium, Asia, Berkshire), date range, etc. Often folders and boxes of images are

created together and additional metadata from these batches are captured during imaging.

All  of these data provide prior information that,  with the right statistical framework, can

considerably improve the outcome of the SDR. These data can be used as informative

priors in a decision tree to direct the images to a suitably trained AI system. However, they

might also be used after AI processing either to validate the output or by combining the

probabilities from independent processes. There is also prior information about the nature

of images to be processed, such as the camera and lighting used, the approximate size of

the object and the orientation of the object to the camera (Stegmaier and Mikut 2017).

Even in the absence of any prior knowledge of the origin and identification of the specimen,

the who, what, when and where of a specimen are all interconnected. Biographies tell us

what,  when  and  where  collectors  are  likely  to  have  collected;  and  known  species

distributions tell  us what countries they are likely to be from. So, where the country is

determined from the label with 90% accuracy, for instance, this information could be used

in  further  processing to  make the determination of  the collector,  date  and taxon more

reliable.

Prior knowledge needs to be combined with derived information to generate the final result.

For example, imagine a European butterfly collection digitized by imaging both its label and

a  dorsal  view  of  the  insect.  The  image  of  the  insect  is  processed  through  an  AI  to

determine  its  identity  and  the  label  is  processed  through OCR,  followed  by  entity

recognition to find a taxonomic name. How are these two determinations of the taxonomic

identity of the specimen combined into a reliable output? Also, how can we use the prior

knowledge that this was a European butterfly collection to improve the AI, OCR and entity

recognition  output  while  making  it  transparent  to  an  end  user  about  how  such

identifications were made

It remains a considerable challenge to create a workflow that incorporates prior knowledge,

uses learned knowledge, propagates uncertainty in the workflow and outputs the result

with a value for certainty. While, so far, such workflows have not been currently addressed

in biodiversity science, there has been research in this area in large-scale microscopic

analysis used for diagnoses (Stegmaier 2017).

4.4 Assembling the workflow

Workflows are made up of a collection of metadata and files - test data, example data,

validation data,  design documents,  parameter  files,  parameter  setting  files,  result  files,

provenance logs, etc (Khan et al. 2019).

14 Walton S et al



While the Common Workflow Language is the language in which a workflow is written and

described, a research object (RO) is a method for packaging and linking the metadata of

disparate  scholarly  information  using  certain  standards  and  conventions  so  that  the

packages can be exported and exchanged between WfMSs with the necessary detail to be

reused  and  reproduced  (Belhajjame  et  al.  2015).  RO-Crate is  a  recently-developed

research object schema that organizes file-based data with its associated metadata in both

human and machine readable formats along with the ability to include additional WfMS-

specific metadata. The RO-Crate Metadata File contains information about the dataset as

a whole and, optionally, about some or all of its files. This provides a simple way to, for

example, assert the authors (e.g. people, organizations) of the workflow or one its files or

to capture more complex provenance for files such as how they were created.

Along with the CWL and Galaxy, RO-Crate has been adopted by EOSCLife and IBISBA as

the service for describing and packaging workflows and their related files. Based on this

community  and  financial  support  for  these  capabilities,  a  number  of  WfMSs,  including

Galaxy, will support CWL and RO-Crate.

4.5 The Specimen Data Refinery techology stack

Executing the SDR workflow will require a foundational tech stack and infrastructure for

two core pieces - a registry and a run platform.

A registry  is  a  library  of  workflows.  All  of  the  tools  and  steps  in  the  workflow will  be

comprised of smaller sub-steps and sub-workflows that make up the building blocks of the

entire engine. These building blocks will be housed in a registry built for the SDR. Workflow

Hub is a workflow library currently under development for EOSCLife and IBISBAHub for

IBISBA workflows.  SEEK, the underlying platform for  both of  these Hubs,  can also be

utilized for the SDR (Wolstencroft et al. 2015). It will describe and store the SDR tools and

steps in such a way that they satisfy FAIR principles and so that end users understand the

workflows data provenance and quality (Goble et al. 2020).

A  run  platform  is  the  technology  stack  that  will  pull  all  of  these  tools,  services  and

processes together.  Along with a variety of other services, the recommended SDR run

platform (Fig. 3) can utilise services like Galaxy, CWL, RO-Crate and Workflow Hub that

are  currently  supported  by  other  ESFRI  initiatives  like  EOSCLife  and  IBISBA.  Further

research is required to identify the best partners for other components like data storage

(e.g. Amazon Web Services, Google Cloud Storage or Microsoft Azure).

5. Conclusion

This gap analysis has made apparent which categories of tools and resources have been

specifically developed for specimen images or can be readily generalised and potentially

used. Image segmentation, OCR and taxonomic resolution have a broad range of existing

and well-tested approaches. Other areas such as visual trait extraction or text processing

tools  to  convert “strings  to  things”  are  lacking.  There  are  some  general  tools  and
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commercial  services which deal with contemporary languages but Latin and Greek are

commonly encountered in scientific names, in diagnostic descriptions (especially botanical

descriptions) and as abbreviations on labels such as “cf.” (confer). Other potential issues

that are yet to be tested or understood are the frequency of co-occurring languages on

labels;  the  frequency of  differing  co-occurring  handwriting  (also  known as  "hands")  on

labels; and how challenging the abbreviated technical writing style of labels is compared to

natural language documents.

Many of the tools and services will require initial or further testing and analysis with training

datasets that are domain-specific to natural  history collections, in order to assess their

quality and accuracy. For example, the Botanic Garden Meise recently undertook an image

recognition pilot with Google Vision to extract label information but the results have yet to

be analysed for accuracy (Walton et al. 2020). Transkribus, a handwriting recognition tool

capable of  deep learning on new handwriting,  has undergone one test  with herbarium

sheets but would need to undergo more rigorous testing (Haston et al. 2015). Named entity

recognition tools like spaCy will need to be tested specifically with natural history collection

labels.

While there are a broad selection of taxonomic name resolution tools and services, many

of which are incorporated into GBIF’s name backbone (GBIF Secretariat 2019), there are

still conflicts and ambiguities that make it hard for end users. The joint infrastructure by

GBIF and the Catalogue of Life may provide new avenues to resolve some of the conflicts

and ambiguities.

We expect to develop training datasets for the following components of the SDR workflow:

• Image segmentation

• Image recognition

• Feature analysis

 
Figure 3.  

The proposed workflow technology stack for the SDR.
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• Trait extraction

• Condition checking

• Species identification

• Atomisation, validation and classification

• Person and geographic resolution

However, the development of ground-truth training data sets requires considerable time

and resources (Dillen  et  al.  2019).  GBIF could  serve as  a  general  source for  training

datasets, particularly for geographic resolution, but there are many Darwin Core terms that

lack consistent community use of identifiers. This includes, but is not limited to, the terms

covering: people (recordedBy, identifiedBy, georeferencedBy), protocols (georeferenceProt

ocol, measurementMethod, measurementUnit) and location data (higherGeographyID, wat

erBody,  island,  locality)  which  make  it  harder  to  develop  tools  to  resolve  strings,  fix

ambiguities and link data. While the biodiversity and natural history data community are

discussing how to better implement identifiers, they have yet to reach a consensus. A lack

of identifier adoption also causes problems for tracking data provenance, an aspect that we

have not addressed in this report, but that is crucial to technical implementation and for the

required metadata about digital specimens - this includes information about hardware used

and people involved in the process of creating digital specimens. Inconsistent recording

and use of image metadata by institutes will also be a challenge - the implementation of

image metadata in DarwinCore is minimal, however there is a multimedia extension (Audu

bon Core; Morris et al. 2013) but we have yet to assess its usage or suitability. There are

also  verbatim  terms  in  Darwin  Core  standards,  making  it  difficult  for  the  machine  to

interpret the data. While challenging to utilise, verbatim data can be valuable in checking

assertions and in  certain processes such as setting physical  uncertainty boundaries in

georeferencing. Verbatim text contains names and abbreviations that are very rare and

may be a good source of for named entity recognition.

Previous projects to develop toolsets or platforms, like BioGeomancer, have suffered from

sustainability issues after project funding ceased. We may find that some tools or scripts

have performance issues in the SDR if used at scale. Tools and datasets developed in the

next  phase  of  SDR  work  should  prioritise  software  sustainability.  Considerations  for

sustainability  include  making  use  of  existing  standards,  comprehensive  functional  and

high-throughput  performance/scaling  tests,  service/tool  documentation,  and  having  a

maintenance plan - these are summarised in detail by the Software Sustainability Institute.

In terms of workflow platform sustainability, we should use a pre-vetted platform, ideally

with hosting support, that makes use of existing European investment and prior efforts in

training, notably in the ESFRI Cluster EOSCLife and the ESFRI IBISBA.

The efficiency of the SDR will come from large-scale processing of images and specimen

data. Images, particularly high resolution and lossless formats, are large files. Transferring,

retrieving, sharing and storing the originals and their derivatives is likely to be slow and

potentially expensive. This is one of the most important issues that the SDR will need to

address, with careful consideration of downsampling, subsampling, overall file size and the

number of transfers. While a cloud-based solution is desirable we are likely to need to offer

locally hosted solutions to avoid prohibitive costs.
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While  all  of  these  complexities  and  hurdles  need  to  be  taken  into  consideration  in

developing the SDR, this analysis also revealed there is a considerable amount of software

already available, both open source and proprietary, and research that has already been

conducted into automating many of these processes. There is significant opportunity to

take advantage of this research by combining it into a workflow that will greatly improve the

efficiency and scalability of natural history digitisation efforts.

Glossary

Active contouring: a method of image segmentation that identifies object contours in an

image in order to detect outlines.

Condition checking: a series of varying checks on a natural history specimen that may

cover their stability, damage, completeness and potential for use. Some examples include:

visually checking mountant colour in microscope slides to determine mountant type and

need for remounting, presence and severity of  verdigris in entomological  specimens or

pyrite decay in paleontological specimens.

ETL: extract, transform, load - usually used to describe the process of extracing data from

one (or more) database/system then transforming it so it can be loaded it into another.

GBIF: Global Biodiversity Information Facility (https://www.gbif.org/).

Google  Vision:  a  machine  learning  tool  for  automated  image  recognition  and

categorisation (https://cloud.google.com/vision).

Ground  truth  data:  a  dataset  comprised  of  information  acquired  through  direct

observation rather than through inference or automation.

Hands: handwritten script attributable to an individual/individuals.

ICEDIG:  EC-funded project  "Innovation and consolidation for  large scale  digitisation of

natural heritage" (https://www.icedig.eu).

Image  recognition:  software  to  identify  the  contents  of  an  image,  including  objects,

locations, text and actions being performed.

Metadata: a set of data that describes and gives information about other data, such as the

file format of timestamp of an image or the provenance and processing inputs of a data

run.

Neural  network:  a  set  of  algorithms  that  are  designed  to  recognize  patterns  and

connections through training on a dataset (see training dataset).

NLP:  natural  language  processing  -  software  to  understand  human  natural  language

including contextualisation and semantics.
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OCR: optical character recognition - software to convert images of typed or handwritten

text into machine readable encoded text.

Reference datasets: data that sets standards to which the fields in other datasets adhere.

RO: research object - a rich aggregation of resources used in a scientific investigation and/

or to provide comprehensive supporting information for a published paper with the aim to

improve reproducibility (http://www.researchobject.org).

SDR: Specimen Data Refinery.

SEEK: a digital object management and cataloguing platform that underpins the Workflow

Hub and IBISBAHub.

Thresholding:  a  method  for  segmenting  an  image  by  converting  a  colour  image  to

grayscale and then filtering out pixels that are above a certain setting on the grayscale - a

threshold - and maintaining pixels that fall below it.

Training  datasets:  datasets  that  are  used  to  train  a  machine  learning  platform  in  a

particular set of capabilities, for example to identify something in an image.

Trait extraction: automated processes to identify and quantify specific characteristics of

an organism, most likely phenotypic data.

WfMS: workflow management system.

YOLO V3: the third release of “You only look once”, an tool for detecting images in an

object and segmenting them.
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*1

Endnotes

Between 6.2% and 12.5% of specimens are digitised and publicly available on GBIF

based on the total number of estimated natural history specimens by Ariño 2010 (1.5

to 3 billion)  and ~187 million total  occurence records in GBIF with basisOfRecord

="PreservedSpecimen" or "FossilSpecimen" (GBIF.org 2020).
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