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Abstract

An extraordinarily high intraspecific chemical diversity, i.e. chemodiversity, has been found

in several plant species, of which some are of major ecological or economic relevance.

Moreover, even within an individual plant there is substantial chemodiversity among tissues

and across seasons. This chemodiversity likely has pronounced ecological effects on plant

mutualists and antagonists, associated foodwebs and, ultimately, biodiversity. Surprisingly,

studies on interactions between plants and their  herbivores or  pollinators often neglect

plant  chemistry  as  a  level  of  diversity  and phenotypic  variation.  The main  aim of  this

Research  Unit  (RU)  is  to  understand the  emergence and maintenance of  intraspecific

chemodiversity in plants. We address the following central questions:

1)  How  does  plant  chemodiversity  vary  across  levels,  i.e.,  within  individuals,  among

individuals within populations, and among populations?

2) What are the ecological consequences of intraspecific plant chemodiversity?
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3) How is plant chemodiversity genetically determined and maintained?

By  combining  field  and  laboratory  studies  with  metabolomics,  transcriptomics,  genetic

tools,  statistical  data  analysis  and  modelling,  we  aim  to  understand  causes  and

consequences of  plant  chemodiversity  and elucidate  its  impacts  on the interactions  of

plants with their biotic environment. Furthermore, we want to identify general principles,

which hold across different species, and develop meaningful  measures to describe the

fascinating  diversity  of  defence  chemicals  in  plants.  These  tasks  require  integrated

scientific  collaboration  of  experts  in  experimental  and  theoretical  ecology,  including

chemical and molecular ecology, (bio)chemistry and evolution.
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State of the art and preliminary work

State of the art

Phenotypic differences among individuals within a population provide the raw material for

natural selection and, when genetically based, lead to adaptive evolution. The importance

of  individual  phenotypic  differences  is  now recognised  in  various  research  fields  (Des

Roches et  al.  2018,  Koricheva and Hayes 2018,  Müller  and Orians 2018),  from social

sciences to studies in ecology, behaviour and evolution. The level of phenotypic variation

within a population is often surprisingly high. For plants, the chemical composition of the

different  tissues  is  an  important  part  of  the  overall  phenotype.  The  huge  diversity  of

specialised (also called secondary) metabolites of plants has been fascinating scientists for

decades.  While  this  diversity  in  metabolites  is  highly  valued  as  a  source  for

pharmaceuticals, the question why plants produce such an enormous diversity is still wide

open.  Plant  species  display  varying  levels  of  intraspecific  phytochemical  diversity

(chemodiversity) within and among populations, from very low to extraordinarily high. For

example, within tree species such as Populus nigra L. (black poplar; Salicaceae) and other

Populus spp., variation in phenolics and other metabolite classes is found (Boeckler et al.

2013, Moritz et al. 2017). Populations of herbaceous species such as Solanum dulcamara

(L.)  (bittersweet  nightshade;  Solanaceae)  show  pronounced  differences  in  their

glycoalkaloid  profiles  between  individuals  (Calf  et  al.  2018).  In  Tanacetum  vulgare L.

(common tansy; Asteraceae) currently more than 30 chemotypes have been described,

which are characterised by the dominant leaf and flower terpenoid(s) (Clancy et al. 2016,

Keskitalo et  al.  2001, Wolf  et  al.  2011).  These three plant species are well  studied by

members of our Research Unit (RU) and offer highly suitable study systems to investigate

the factors contributing to the emergence and maintenance of plant chemodiversity. Like

other  forms  of  intraspecific  variation,  the  maintenance  of  such  high  intraspecific

chemodiversity requires an explanation, because chance effects and most forms of natural
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selection usually lead to loss or fixation of some variants (Speed et al. 2012, Wang et al.

2018). Thus, we aim:

1. to characterise intraspecific plant chemodiversity at different levels,

2. to study the ecological consequences of such diversity and

3. to determine, how intraspecific plant chemodiversity is genetically determined and

maintained.

The importance of  variation  in  chemical  phenotypes of  organisms for  shaping species

interactions  has  often  been  neglected,  although  chemical  communication  is  the  most

ancient mediator of information exchange among individuals. Specialised metabolites play

an important role in the communication between plants and their environment. They serve

as  defences  against  herbivores  or  pathogens  but  also  as  attractants  for  beneficial

organisms such as pollinators (Fraenkel 1959, Hartmann 2007). Not only host choice and

acceptance  but  also  the  developmental  performance  of  herbivores  and  pollinators  is

predominantly shaped by plant metabolites (Schoonhoven et al. 2005). The chemical co-

evolution  model  proposes  that  rapid  adaptations  by  both  plants  and  insect  herbivores

impose  new  selection  pressures leading  to  the  production  of  novel  metabolites  in  an

evolutionary  arms race (Ehrlich  and Raven 1964).  However,  the chemical  co-evolution

model is questioned, because not every specialised plant metabolite may have a biological

effect.  For that  reason,  the “screening hypothesis”  (Firn and Jones 2003) predicts that

plants need to screen a large number of metabolites to produce at least some effective

defences. To gain such chemodiversity, enzymes must be able to accept more than one

substrate or  to  make more than one product  (Firn and Jones 2003).  These and other

evolutionary  theories  mainly  focus  on  differences  between  and  among  different  plant

species or populations. However, there is experimental evidence that intraspecific variation

within populations matters as well. For some plant species it was found that individuals

growing in mixed stands of high intraspecific (genetic) diversity perform better compared to

plants in monoclonal stands (Bustos-Segura et al. 2017, Crutsinger et al. 2006, Dawson

and  McCracken  1995,  Müller  et  al.  2018).  This phenomenon  may  be  driven  by  an

increased diversity and complexity of the plant-associated community of invertebrates in

more genetically and chemically diverse populations, which reduces damage of individual

plants and facilitates pollination. The effects of metabolites, and thus also the effects of

intraspecific plant chemodiversity, on species interactions can cascade up to higher trophic

levels due to plant metabolites being transferred from one level to the next in the food

chain  (Gols  2008).  In  addition,  intraspecific  differences  in (herbivore-induced)  plant

volatiles influence mutualistic interactions with natural enemies of herbivores as well as

with pollinators (Clavijo McCormick et al. 2014, Kuppler et al. 2016, Ye et al. 2018).

Differences in metabolite composition do not only occur among but also within individual

plants (Hahn  and  Maron  2016,  McCall  and  Fordyce  2010).  This  intra-individual

chemodiversity  includes  all  plant  parts  from  roots  to  shoots  and  reproductive  tissues

(Jakobs and Müller 2018, Tsunoda et al.  2017).  Moreover,  such chemodiversity is also

measurable at a very small scale such as, e.g., the phloem sap of different leaves (Jakobs

et al. 2019, Stolpe et al. 2017b). In addition, metabolites produced by the various plant

parts often show pronounced spatio-temporal variation (Ochoa-López et al.  2018). This
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chemodiversity particularly large in long-lived trees such as P. nigra, where a tremendous

diversity in phenolics occurs within individual crowns and over the years (Boeckler et al.

2013, Lämke and Unsicker 2018 and references therein). Our current knowledge about the

effects of intraspecific and intra-individual plant chemodiversity on communities of plant-

associated organisms and their biodiversity is still  incomplete. Therefore, we argue that

more  comprehensive  studies  are  urgently  needed  to  understand  the  causes  and

consequences of intraspecific plant chemodiversity and to elucidate the impacts of such

chemodiversity on the interactions of plants with their biotic environment.

Chemodiversity may be enhanced in response to the abiotic and biotic environment, in

dependence of phenotypic plasticity (Campbell and Vallano 2018, Gols et al. 2007, Kigathi

et al. 2019, Kigathi et al. 2013, Kleine and Müller 2014, Nguyen et al. 2016, van Dam and

Baldwin  2001).  For  example,  herbivore  or  pathogen  attack  induce  local  and  systemic

changes in plant metabolites (Clavijo McCormick et al. 2014, Steppuhn and Baldwin 2007,

Travers-Martin and Müller  2007),  thereby affecting the chemical  profiles of  undamaged

leaves and even flowers (Bezemer and van Dam 2005, Gonzáles-Megías and Müller 2010,

Hoffmeister et al. 2016, Kutyniok and Müller 2012). Differential induction caused by certain

organisms  can  have  consequences  on  interactions  of  plants  with  other  mutualists  or

antagonists (Clavijo McCormick et al.  2014, Kumar et al.  2016, Lortzing and Steppuhn

2016, Senft et al. 2017). Surprisingly, many studies on plant-mutualist or plant-antagonist

interactions neglect the role of  chemical  plasticity and more generally the role of  intra-

individual plant chemodiversity. Moreover, only few researchers take the challenge to study

natural variation in perennial non-model plants and particularly in trees.

Most  theories  on  optimal  defence  production  assume  that  the  production  of  (new)

specialised metabolites comes with biochemical costs. These costs are quite difficult  to

measure directly (Cipollini  et al.  2014), though physiological costs for the production of

some  metabolites  have  been  calculated  (Bekaert  et  al.  2012,  Gershenzon  1994).

Researchers usually measure fitness proxies, for example, differences in the number of

seeds, to estimate direct biochemical costs. Benefits of producing specialised metabolites

become evident when plants are in their natural environment, where they interact with a

diverse community of herbivores, pathogens and mutualists. The net balance of costs and

benefits  may  determine  whether  a  particular  chemical  phenotype  can  survive  or  even

increase in frequency in natural communities. However, the effects of individual specialised

metabolites are rarely uniform; a compound deterring many generalist herbivores may be a

stimulant for specialists (Calf et al. 2018, Reifenrath and Müller 2008, Schoonhoven et al.

2005).  Similarly,  floral  volatiles  attracting  pollinators  may  also  make  the  plant  more

apparent  to  herbivores,  picking  up  the  same floral  scent  (Junker  and  Blüthgen  2010,

Unsicker  et  al.  2009).  Consequently,  there always will  be trade-offs  due to contrasting

effects  of  individual  metabolites  that  may  simultaneously  attract  mutualists  and

antagonists.

Traditionally, the most characteristic taxon-specific specialised metabolites are studied in

detail  (e.g.,  specific  alkaloids  in  Solanaceae).  More  recently,  large-scale  untargeted

metabolic fingerprinting and targeted profiling are used to gain a more complete picture of

the overall chemodiversity in plants (Peters et al. 2018). Comparative eco-metabolomics of
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different plant species facing an identical challenge (Schweiger et al. 2014b) or plants of

one species  grown under  different  conditions  (Jansen et  al.  2009,  Kaling  et  al.  2015,

Schweiger et al. 2014a) combined with multivariate statistical tools (Kuppler et al. 2016,

Moritz  et  al.  2017,  Schweiger  et  al.  2014a)  are  extremely  helpful  to  gain  a  better

understanding of the specificity of plant chemodiversity and of plant responses towards

their environment. Only recently, eco-metabolomics approaches have also been applied to

characterise native populations in the field (Clancy et al. 2018, Nagler et al. 2018). Highly

sensitive chemical analytical instruments allow us to analyse even small fractions of plant

organs  such  as  individual  flower  parts  (Abdalsamee  and  Müller  2015),  phloem  sap

exudates (Jakobs and Müller 2018, Stolpe et al. 2017a), extrafloral nectar (Lortzing et al.

2016),  or  trichomes  (Schilmiller  et  al.  2009).  Novel  strategies  for  the  evaluation  and

interpretation  of  metabolomics  data  are  currently  developed,  for  example,  using  exact

mass  difference  network  analyses  (MDiN)  for  the  metabolomic  description  of  different

genotypes of poplar (Moritz et al. 2017) and chemotypes of T. vulgare (Clancy et al. 2018).

Such  data  sets  allow  disentangling  of  biochemical  mechanisms  that  modify  herbivore

interactions (Kaling et al. 2018).

At the molecular level, metabolite diversification can be a result of various mechanisms,

including gene duplication and neo-functionalisation, changes in transcriptional regulation

or changes in enzymes involved in the biosynthesis of  plant  metabolites (Moore et  al.

2014, Ober 2010). However, the relative contribution of the various mechanisms, including

also epigenetic variation (Aller et al. 2018), remains to be elucidated. To explain the large

chemodiversity of plants, a few verbal models have been proposed (Firn and Jones 2003,

Speed  et  al.  2012).  The  current  challenge  now  is  to  explicitly  link  the  observed

chemodiversity with basic evolutionary principles. Thus, mathematical and computational

eco-evolutionary models (Wittmann et al. 2013, Wittmann and Fukami 2018) are needed to

link genes,  enzymes,  metabolites and organisms in their  ecological  environment.  Such

models will allow us to construct a comprehensive and novel framework for the formation

of  intraspecific  plant  chemodiversity  and  its  maintenance  over  evolutionary  time.  In

addition, we need to define a suitable index similar to the established indices in biodiversity

studies that allow us to compare plant chemodiversity within and among species. Given the

various expertise needed for these tasks, a thorough understanding of the ecology and

evolution of  plant  chemodiversity  can only be achieved through close collaborations of

scientists  with  experimental  and  theoretical  expertise  in  ecology,  chemical  ecology,

molecular ecology, evolution, (bio)chemistry and statistical and mathematical modelling.

(Joint) preliminary work

Our RU brings together leading experts who have conducted (often jointly)  preliminary

work in all relevant research fields and are well experienced in their disciplines:

Sybille B. Unsicker (P1) is a chemical ecologist with special interest in the direct and

induced defences of woody plant species against their  natural  enemies such as insect

herbivores  and  pathogens  (e.g.,  Boeckler  et  al.  2011,  Boeckler  et  al.  2013,  Clavijo

McCormick et  al.  2014, Lämke and Unsicker 2018).  Her research combines laboratory
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studies in young trees with field studies in mature trees. Methods of classical  ecology,

analytical  chemistry  and  molecular  biology  are  used  to  decipher  the  nature  of  tree-

environment  interactions  and  the  underlying  mechanisms.  Unsicker  studied  species

diversity effects on invertebrates in collaboration with Weisser Unsicker et al. 2006 and

plant defences with Schnitzler (Irmisch et al. 2013), Junker (Junker et al. 2011, Junker et

al. 2018) and Weisser (Gossner et al. 2014, Kigathi et al. 2019, Kigathi et al. 2013).

Jörg-Peter  Schnitzler  (P2) is  a  plant  physiologist  and  biochemist,  who  is  particularly

interested in deciphering the metabolic vocabulary of  plants and analysing biochemical

mechanisms  underlying  biological  functions  of  plant  volatiles  (e.g.,  Kaling  et  al.  2015,

Kaling et al. 2018, Moritz et al. 2017). He combines molecular biological (transcriptomics),

biochemical  (metabolomics)  and  ecophysiological  (gas  exchange,  spectral  sensors)

techniques to analyse the impact of abiotic and biotic factors on plant fitness, with a focus

on volatile compounds and stress-induced metabolites. Schnitzler uses new tools such as

mass  difference  enrichment  analysis  that  incorporate  unidentified  metabolites  in

chemotypic description and applied this technique with Weisser (Clancy et al. 2016, Clancy

et al. 2018). He also worked with Unsicker on plant defences (see above).

Anke Steppuhn (P3) is a molecular ecologist, who investigates plant defence strategies

against herbivore feeding and egg deposition. She aims to understand the strategies of

plants used to fend off herbivores, costs and benefits involved in defence under different

environmental  conditions  and  how plants  perceive  herbivore  attack  (e.g.,  Lortzing  and

Steppuhn 2016,  Lortzing et  al.  2017,  Steppuhn et  al.  2008).  Her  research focuses on

solanaceous  plants  and  involves  bioassays,  ecological  field  experiments,  chemical

analyses  of  plant  metabolites  (targeted  and  untargeted)  and  molecular  approaches,

including transcriptomics, sequencing and gene silencing. Steppuhn and van Dam have

been working closely together on S. dulcamara Lortzing et al. 2016, Nguyen et al. 2018,

Nguyen et al. 2016).

Nicole M. van Dam (P4) is a molecular ecologist, studying the chemical and molecular

mechanisms  underlying  interactions  between  plants  and  their  environment,  especially

herbivores and higher trophic levels. She has a long-standing expertise in the metabolite

analysis of above- and belowground herbivore-induced defence responses (e.g., Bezemer

and van Dam 2005,  Calf  et  al.  2018,  van Dam et  al.  2010,  van Dam 2009).  For  the

analyses of  plant  samples,  she uses a combination of  molecular  (transcriptomics)  and

ecometabolomic approaches (e.g., Peters et al. 2018, together with Müller), combined with

manipulative  experiments  to  assess the ecological  relevance.  Van Dam and Steppuhn

have been working closely together on S. dulcamara (see above) and van Dam contributed

to the meta-study by Junker (Junker et al. 2018).

Caroline Müller (P5) is a chemical ecologist, who investigates the role of natural products

involved in communication between organisms. She is particularly interested in the inter-

and intraspecific variation in plant responses to environmental challenges, in tissue-specific

analysis  of  metabolites  with  special  focus  on  phloem  sap  and  in  the  role  of  factors

modulating plant-antagonist interactions (e.g., Jakobs et al. 2019, Schweiger et al. 2014a,

Schweiger  et  al.  2014b,  Schweiger  et  al.  2014c,  Tewes et  al.  2018).  Müller  combines
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chemical-analytical tools with bioassays and behavioural studies to elucidate the ecological

and evolutionary basis of species interactions. She collaborates with Eilers and Weisser in

studying the role of chemodiversity in T. vulgare-insect interactions and explored the use

and challenges of eco-metabolomics with van Dam (Peters et al. 2018).

Elisabeth J. Eilers (P6) is an ecologist,  who investigates chemo-ecological  aspects of

mutualistic  and  antagonistic  plant-insect  interactions  (e.g.,  Kallenbach  et  al.  2014,

Henselek et al. 2018, Eilers et al. 2015). She therefore acquired skills in designing and

executing field and laboratory experiments, chemical analysis (particularly plant volatiles

above-  and  belowground),  neuro-ethological  methods  (including  bioassays),  statistical

analysis of complex data as well as plant and insect rearing methods. Eilers is particularly

interested in the role of chemodiversity in economically and ecologically relevant plants

that  can  explain  plant  invasiveness  and  species  interactions.  Eilers  and  Müller  have

already collected seeds of T. vulgare in the field, and Eilers is currently chemotyping the

offspring plants to be used for the projects of the RU.

Wolfgang W. Weisser (P7) is an insect ecologist, who is interested in biodiversity and in

multitrophic interactions at  the population,  community  and ecosystem level.  He studies

interactions  between  plants,  herbivorous  insects  and  their  natural  enemies  as  well  as

mutualists, and investigates the involvement of plant volatiles in these interactions, using T.

vulgare as model (Clancy et al. 2016, Clancy et al. 2018). Weisser has worked extensively

on the role of plant diversity for plant-arthropod interactions. In the framework of this RU,

he is  especially  interested in  the role  of  plant  chemodiversity  for  structuring arthropod

communities.  Plant  material  and expertise on T. vulgare is  exchanged with Müller  and

Eilers. Weisser and Unsicker have close collaborations on various projects (see above).

Andrea  Bräutigam  (P8) is  a  computational  biologist  with  special  interest  in  network

analysis and modelling. Her research focusses on elucidating the molecular composition of

complex traits and their  evolution (e.g.,  Bräutigam et al.  2014, Bräutigam et al.  2011a,

Bräutigam et al. 2011b, Ramírez-González et al. 2018). Bräutigam combines bioinformatic

and biostatistic methods with biochemical and physiological measurements. Within the RU,

she is particularly interested in the effects of selection on the molecular level that explain

the role of  chemodiversity  in  plant-herbivore interactions.  Bräutigam received terpenoid

data on chemotyped plants and their offspring and chemotyped plant material from Müller

and Eilers for RNA-seq analysis to develop the biochemical function of terpene synthases

in T. vulgare.

Meike J. Wittmann (P9) is a theoretical biologist broadly interested in theoretical ecology

and  population  genetics,  and  in  particular  in  the  interplay  between  ecological  and

evolutionary processes (e.g., Wittmann and Fukami 2018, Wittmann et al. 2013, Wittmann

et  al.  2017).  Recently,  MJW  has  focused  on  building  and  analysing  eco-evolutionary

equation-based  models  and  simulations  for  the  maintenance  of  species  diversity  and

genetic diversity, for example, by spatial and temporal variation in selection pressures. She

is eager to apply this experience to the new challenge of modelling plant chemodiversity.

To  make sure  that  the  empirical  results  and theoretical  models  within  the  RU can be
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fruitfully connected, Wittmann already discussed in detail the design of the common garden

and cafeteria-style experiments planned in the RU, in particular with Müller and van Dam.

Robert R. Junker (P10) is an evolutionary ecologist, who focuses on plant-animal and

plant-bacteria interactions. He investigates how volatile compounds affect the diversity and

interaction patterns of insects and bacteria and how these organisms alter the phenotype

of plant species (e.g., Junker and Blüthgen 2010, Hoffmeister et al. 2016, Kuppler et al.

2016).  His  expertise  in  performing  field  and  lab  experiments  is  complemented  by

pronounced skills in the development and application of statistical approaches. Recently,

Junker  proposed  statistical  analyses  of  the  diversity  of  chemical  phenotypes  (scent

bouquets) that consider the biosynthesis of the involved compounds. Junker collaborated

with Unsicker and van Dam for a meta-analysis on the structure of chemical phenotypes

(Junker et al. 2018).

Project-related publications

Principle investigators highlighted 

Bräutigam A , Mullick T, Schliesky S, Weber APM (2011) Critical assessment of assembly

strategies  for  non-model  species  mRNA-Seq  data  and  application  of  next-generation
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Calf OW, Huber H, Peters JL, Weinhold A, van Dam NM (2018) Glycoalkaloid composition

explains variation in slug resistance in Solanum dulcamara. Oecologia 187: 495-506.

Clancy MV, Zytynska SE, Moritz F, Witting M, Schmitt-Kopplin P, Weisser WW, Schnitzler
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BS, Gershenzon J, Köllner TG, Unsicker SB (2014) Herbivore-induced volatile emission in

black poplar: regulation and role in attracting herbivore enemies. Plant Cell Environ 37:
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low disturbance sampling of volatile and non-volatile compounds from plant roots. J Chem

Ecol 41: 253-266
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dulcamara to insect oviposition. Plant Cell Environ 40: 2663-2677
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Junker RR, Kuppler J, Amo L, Blande J, Borges R, van Dam N, ...., Unsicker SB, et al.

(2018)  Covariation  and  phenotypic  integration  in  chemical  communication  displays:

biosynthetic constraints and eco-evolutionary implications. New Phytol 220: 739-749

Weisser WW , Roscher C, Meyer ST, Ebeling A, Luo GJ, Allan E, et al. (2017) Biodiversity

effects  on  ecosystem  functioning  in  a  15-year  grassland  experiment:  Patterns,

mechanisms, and open questions. Basic Appl Ecol 23: 1-73

Wittmann  MJ,  Fukami  T  (2018)  Eco-evolutionary  buffering:  rapid  evolution  facilitates

regional species coexistence despite local priority effects. Am Nat 191: E171-E184

Objectives, concept and approach

Common objectives of the RU

In  the  envisaged  RU,  we  will  investigate  the  ecology  and  evolution  of  intraspecific,

including intra-individual, chemodiversity in three focal plant species. Combining field and

laboratory studies with untargeted metabolomics and targeted metabolite profiling as well

as genetic tools, statistical data mining and modelling, we want to elucidate the ecology

and evolution of intraspecific chemodiversity of plants.

Our central questions are:

1. How does plant chemodiversity vary across levels, i.e. within individuals, among

individuals within populations, and among populations?

2. What are the ecological consequences of intraspecific plant chemodiversity?

3. How is plant chemodiversity genetically determined and maintained?

By addressing these questions, we aim to provide a scientific basis for understanding the

role of  intraspecific plant chemodiversity in natural  plant communities,  which may have

important  implications  for  pest  control  in  crops,  ecosystem  functioning  and  nature

restoration.  We  will  take  a  combined  experimental  and  theoretical  approach,  whereby

ecological field and laboratory studies will  be complemented with chemical and genetic

analyses as well as mathematical modelling (Fig. 1).

Within the first funding period, we aim to:

• develop  a  conceptual  framework  to  describe  chemodiversity,  adopting  and

comparing common biodiversity measures for application to plant chemodiversity

• characterise the constitutive and induced plant chemodiversity within individuals,

within populations and among populations with spatio-temporal resolution

• assess  the  effects  of  plant  chemodiversity  on  herbivores  with  different  feeding

mode as well as pollinators and the contribution of phenotypic plasticity therein

• describe potential trade-offs between costs and benefits of plant chemodiversity on

a community level
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• identify and characterise genes coding for biosynthetic pathways relevant for plant-

insect interactions and link chemodiversity to genetic features

• test whether patterns of chemodiversity in the three species support or contradict

different hypotheses that aim to explain chemodiversity

 

 

Figure 1.  

Conceptual framework of the proposed RU on the ecology and evolution of intraspecific plant

chemodiversity. We will study chemical variation in different plant parts (flowers, nectar, pollen,

leaves, phloem sap; roots will be included in a potential second funding period), among plant

individuals within populations and among populations (left) as well as consequences on the

plant-associated community (right) over space and time. The projects will focus on the tree

Populus nigra and the herbs Solanum dulcamara and Tanacetum vulgare (lower panel, from

left to right).

 

Figure 2.  

Parallel research approaches in individual project parts and synergies of this RU.
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• develop  a  new  eco-evolutionary  modelling  framework  for  intraspecific  plant

chemodiversity

• generate specific data to parametrise the theoretical models

The overall aim of an envisaged second funding period is to implement the insights gained

in the first phase into a broader context by:

• extending  the  geographic  scale  of  study  populations  in  all  three  species  to

comparatively  asses  the  role  of  the  breadth  in  environmental  conditions

accompanying their wide distribution

• including  belowground  intraspecific  plant  chemodiversity  and  effects  on  root

herbivores

• investigating  the  causes  and  consequences  of  plant  chemodiversity  in  more

complex (natural) settings including microorganisms and higher trophic levels

• exploring  the  role  of  plant  chemodiversity  from  the  herbivore  and  pollinator

perspective in more detail (e.g., in terms of counter-adaptations)

• developing genomic resources for the three study species such that chemodiversity

can be linked to specific gene (and potentially epigenetic) variation and positioning

in the genome

• incorporating  more  genetic  realism  into  mathematical  models  for  plant

chemodiversity

Expected benefits of collaboration within the RU

This RU brings together a highly motivated, well-integrated and diverse group of scientists.

We share a common vision on the ecology and evolution of plant chemodiversity. As a

group, we can test  hypotheses suggested by the currently available models explaining

chemodiversity in parallel at multiple levels of complexity and synthesise the data to form

well-supported conclusions. For example, the RU as a whole will be able to resolve if one

of  the  key  predictions  from  the  screening  hypothesis,  i.e. that  “plants  maximise

chemodiversity”,  applies in the three study species. The combined expertise in this RU

brings us in the unique position to thoroughly test this hypothesis in three distinct natural

plant systems.

At the same time, each member has a unique area of expertise to generate the necessary

synergies for a successful implementation of this joint project. Together, the competence of

the applicants covers all methods necessary to address the questions and hypotheses of

the individual projects as well as the data synthesis. Integrating field studies and classical

ecological experiments with –omics techniques, bioinformatics and theoretical modelling

will foster the exchange of knowledge and skills among RU members. Effective knowledge

exchange will be ensured by regular meetings of all RU members and by lab visits of the

young investigators (PhD students, postdoc). By these means, the young investigators will

have access to a multifaceted method toolbox and expertise, which individual supervisors

cannot offer.
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For example, bioinformatic analyses of molecular data will  be particularly supported by

Bräutigam, who is an expert in transcriptome analyses and supervised machine learning,

to  study  complex  traits  along evolutionary  trajectories  and to  characterise  traits  at  the

molecular level (Bräutigam et al. 2014, Bräutigam et al. 2011a, Bräutigam et al. 2011b,

Ramírez-González  et  al.  2018).  Furthermore,  the  RU  will  highly  profit  from  the

mathematical  modelling  expertise  of  Wittmann  (Wittmann  et  al.  2017,  Wittmann  and

Fukami 2018), who will provide a theoretical framework for the evolution and maintenance

of plant chemodiversity. Bräutigam and Wittmann were successfully recruited in 2017 for a

W2 professorship and a Junior-professorship with tenure option, respectively, at Bielefeld

University.  Their  expertise  complements  interests  by  present  researchers  at  Bielefeld

University (Müller, Eilers), which will facilitate easy collaboration particularly among these

groups.

Various metabolomics approaches have been developed in several labs involved in the

RU. For instance, the collection of volatiles using push pull systems or passive trapping by

polydimethylsiloxane (PDMS) tubes is well established by various PIs (Clavijo McCormick

et al. 2014, Hoffmeister et al. 2016, Jakobs and Müller 2019, Kallenbach et al. 2014, van

Dam  et  al.  2010).  Large-scale  untargeted  metabolomics  using  liquid  and  gas

chromatography  (LC  and  GC)  coupled  with  mass  spectrometry  (MS)  combined  with

multivariate statistics are routinely applied in various labs of the RU [Müller (Schrieber et al.

2019, Schweiger et al. 2014b), Schnitzler (Kaling et al. 2015, Moritz et al. 2017), van Dam

(Calf  et  al.  2018)].  By  exchanging  experience  on  advantages  and  disadvantages  of

individual  methods and by intensive knowledge transfer,  we will  establish and optimise

methods that will be commonly used in all respective groups (e.g., ring trial, Fig. 3). This

will allow for a better comparison of the individual data (e.g., for the synthesis) as well as

benefit the entire chemical ecology research community.

 
Figure 3.  

Scheme of the collaborative ring trial within the RU. For details see text. C – control; H –

herbivore-treated.
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A  challenge  in  the  analysis  of  plant  chemodiversity  is  the  huge  number  of  not  yet

chemically  characterised  metabolites.  Given  that  concurrent  identification  and

quantification of entire plant metabolomes is not possible to date, analytical tools such as

mass difference networks (MDiN) and mass difference enrichment analysis (MDEA) can

expand our capacity to analyse mass spectrometry data. These tools are established by

Schnitzler (Kaling et al. 2018, Moritz et al. 2017) and will be made available for the RU.

Phloem  sap  collection  by  laser  stylectomy  or  using  ethylenediaminetetraacetate  and

analysis of  the exudates is well  established in the Müller  group (Kuhlmann and Müller

2010, Schweiger et al.  2014c, Stolpe et al.  2017a).  Students of the groups performing

phloem sap collection and analysis (Müller, Steppuhn, Unsicker, van Dam) will be trained in

the Müller lab and apply the methods to their research questions. A comparison between

nectar and phloem sap chemistry will be of particular interest (as in Lortzing et al. 2016).

For  analysing structural  sugar  isomers in  phloem exudates and nectar,  a  Trapped Ion

Mobility LC-MS-MS (timsTOF , Bruker) is available in the Unsicker group.

Investigating the role of intraspecific plant chemodiversity for herbivore resistance and its

importance in shaping trade-offs among metabolites in affecting antagonists and mutualists

is a common aim in this RU. Investigating this topic comprehensively will be enabled by the

complementary expertise of different PIs on plant resistance mechanisms (Calf et al. 2018,

Kigathi  et  al.  2013,  Müller  2008,  Steppuhn and Baldwin  2007,  Steppuhn et  al.  2008).

Similar  set-ups  for  common  garden  experiments  with  different  levels  of  intraspecific

chemodiversity will  be used in all  empirical projects to disentangle genotype-phenotype

relationships and effects of plant chemodiversity on insect communities. In parallel,  the

molecular basis of terpene diversity will be evaluated by Bräutigam. For example, a set of

candidate genes for single nucleotide polymorphism (SNP) analysis of a T. vulgare field

population is currently developed. These data can be used for population genetic analyses

of other T. vulgare individuals.

The  ecology  and  evolution  of  intraspecific  plant  chemodiversity  can  only  be

understood  by  studying  the  consequences  of  this  diversity  in  the  field  and  in

ecologically relevant experiments. Thus, a very important feature of the RU is to study

the effects of chemodiversity in the field. Most PIs have extensive experience in studying

interactions between plants and other organisms in common gardens and the field.

Finally, the integration of data (synthesis) is one of the key goals of the current RU.

Combining the metabolic data from the different plant species and tissue types, we aim to

identify patterns of co-variation in the composition of metabolites that can be aggregated in

phenotypic integration values across an organisational hierarchy. Junker has been very

successful  in  bringing  together  data  from  various  researchers  to  study  biosynthetic

constraints and eco-evolutionary implications of the co-variation and phenotypic integration

in chemical communication displays (Junker et al. 2018) and will lead this part of the RU.

TM
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Expected key results in the short- and medium-term

We focus on three plant species differing in life-history traits to address the common key

questions of this RU on the ecology and evolution intraspecific plant chemodiversity. The

common approach used in this RU will  strongly contribute to our understanding of how

plant chemodiversity varies across different levels within selected plant species and how

such chemodiversity affects interactions with other antagonistic and mutualistic organisms.

We will determine how biotic factors influence the biosynthesis of specialised metabolites

and reveal patterns of co-variation. In conclusion, we will gain novel insights on several

levels of intraspecific plant chemodiversity and its functionality in interactions with

other organisms.

Long-term goals

In the long-term, we aim to study additional layers of intra-individual differences. This will

be achieved by including research on the chemodiversity of roots and interactions with

belowground  herbivores  as  well  as  with  symbiotic  or  pathogenic  microorganisms.

Moreover, populations from a broader geographic range differing in selection histories will

be included. We also intend to investigate the role of epigenetics in chemodiversity as a

possibly important mechanism for the adaptation of perennial plants to varying herbivore

pressures. Studying three plant species with different life-history traits in detail will allow us

to refine models explaining evolutionary origins of chemodiversity.

Work programme including proposed research methods

For this RU on chemodiversity we propose to combine a variety of different experimental

approaches  with  state-of-the-art  analytical  techniques  and  mathematical  modelling

approaches to characterise metabolic phenotypes with high resolution mass spectrometry.

At  the  same time,  we  aim to  develop  a  clearer  definition  of  the  term chemodiversity,

whereby chemodiversity can be found at different hierarchical levels. This is needed to

explicitly link metabolic patterns to community dynamics and biodiversity.

Research framework

Study systems: We focus our research on three study species that are ideal to address

our research questions, P. nigra, S. dulcamara and T. vulgare. All three species exhibit a

high  degree  of  chemodiversity  and  naturally  occur  in  Northern  and  Central  European

ecosystems including Germany. Although none of these species are classical model plants

in molecular ecology, they fulfil essential characteristics for studying the eco-evolutionary

relevance of chemodiversity also under natural selective regimes.

The three species selected for our projects have several features in common, which will

allow us to transfer concepts and to determine more general principles. They are perennial

and can be cloned easily, which is important for obtaining sufficient replicates and testing

phenotypic  plasticity  while  controlling  for  genetic  background.  Furthermore,  all  three

species have been introduced to other continents. This widespread distribution will allow us
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in  the  long-term  to  compare  populations  with  different  selection  histories  on  a  large

geographic scale. Most importantly, the three species have received attention based on

their interesting metabolites, e.g. in the field of pharmaceutics (Hage and Morlock 2017,

Kumar  et  al.  2009,  Mitich  1992).  Regarding  their  volatile  bouquets,  they  share  some

metabolite classes such as terpenoids. With respect to their species-specific metabolites,

P.  nigra is  mainly  characterised  by  phenolics  (Boeckler  et  al.  2011),  S.  dulcamara by

glycoalkaloids (Eich 2008) and T. vulgare by mono- and sesquiterpenoids (Keskitalo et al.

2001). Based on the literature and our own experience, we expect an increasing level of

diversity  in  common classes of  metabolites  such as  terpenoids  from P.  nigra up  to  T.

vulgare. A gradient in dependence on animal pollination is also found across the three

species,  with  P.  nigra being  wind-pollinated  (Düll  and Kutzelnigg  2016),  S.  dulcamara

mainly pollinated by bumblebees (De Luca and Vallejo-Marin 2013), and T. vulgare being

visited by various pollinator species (Düll and Kutzelnigg 2016). This gradient in pollination

systems  opens  up  the  interesting  opportunity  to  study  the  variation  and  extent  of

chemodiversity  of  flower  volatiles.  In  parallel,  pollen  defence  chemodiversity  will  be

investigated, because flower rewards also need some protection against robbery. Another

important point for the molecular exploration is the fact that the three species are diploid.

First molecular data and resources on all three species are available or currently generated

within our RU (transcriptomes of all three species).

Using a common experimental design, leaf volatiles will be measured in the three study

species  applying  the  same  methodology  [PDMS  tubes  (Kallenbach  et  al.  2014)].

Measurements will be taken at three representative time points over the year, which may

differ according to the species’ biology (P1–P7). This approach will enable us to test how

levels of chemodiversity depend on the life-history and growth form of the species (P10).

Moreover,  untargeted  finger-printing  and  targeted  analyses  of  characteristic  defence

metabolites will be performed using high performance LC quadrupol time of flight MS (LC-

QTOF-MS) and GC-MS. MDEA will be used for in depth data evaluation (supported by P2).

Furthermore,  the  associated  herbivore  and  pollinator  community  as  well  as  damage

patterns will be recorded in parallel common garden experiments with plots of single and

mixed chemotypes, allowing us to detect correlations between plant chemodiversity and

herbivores  at  both  spatially  and  temporally  relevant  scales.  Metabolic  data  will  be

complemented  with  transcriptomics  data  in  all  species  (P1–P2,  P4,  P8).  We  will  also

generate  data  to  identify  properties  of  biosynthetic  pathways  (P8–P10)  and  develop

mathematical models as well as ‘virtual plants’, which can then be subjected to simulation

experiments and comparative analyses (P9). The individual project parts and synergies are

depicted in Fig. 2.

Milestones and synergies 

The expected benefits of collaboration (Expected benefits of collaboration within the RU),

expected key results in the short- and medium-term (Expected key results in the short- and

medium-term),  and  the  long-term  goals  (Long-term  goals),  are  outlined  above  and

summarise our milestones and synergies. As an additional overarching milestone we need

to reach a proper definition of ‘chemotype’ and ‘chemodiveristy’. As a working definition, we
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define a chemotype as a group of plants within a species, which can be distinguished

according to the distinct and mostly heritable relative composition of compounds belonging

to  one  prominent  class  of  specialised  metabolites,  e.g.,  glycoalkaloids  or  terpenoids

(Linhart et al. 2005, van Leur et al. 2006). Chemodiversity may be calculated by applying

various indices derived from biodiversity research (Morris et al. 2014). Often, the Shannon

index is used, which considers the number of occurring metabolites and their abundance

(Wolf et al. 2012, Tewes et al. 2018). Moreover, as in biodiversity, chemodiversity can be

measured at different levels, with α-diversity considering the number and abundance of

chemical  metabolites produced by each individual,  β-diversity  measuring the difference

between two profiles  of  specialised  metabolites  and  γ-diversity  considering  the  overall

chemodiversity in a population or region. Within the first year of the RU, we will utilise the

various data sets produced in our working groups to evaluate the suitability of different

measurements for chemodiversity (P1–P10). A workshop on this topic will be held in the

first year. The goals will be to develop the most comprehensive conceptual definition of

‘chemodiversity’ and to apply the most meaningful measure of chemodiversity to all data

sets. Developing a unifying concept of chemodiversity will be of importance for the entire

chemical ecology community.

Moreover,  for  a  synthesis  of  the  various  data  from the  individual  projects,  we  aim to

calculate the phenotypic integration of plant metabolites across an organisational hierarchy

(mostly second year). The empirical data sets produced by the members of the RU in their

individual projects (P1–P8) will provide the scientific basis to investigate the biosynthetic

and  genetic  organisation  of  chemical  trait  co-variation  and  to  evaluate  the  functional

importance of phenotypic integration in plant metabolites (P10). In order to discriminate

among  functional,  genetic,  developmental  and  environmental  causes  of  co-variation,

phenotypic  integration  and  modularity  (Klingenberg  2008),  we  will  analyse  patterns  of

variation and co-variation at the level of an individual, at the population and at the species

level.  In  the  modelling  project  (P9),  we  will  obtain  a  conceptual  integration  of  genetic

architecture of biosynthetic pathways with ecological interactions between plants and their

herbivores and pollinators. Drawing on expertise and data from the empirical projects, the

models will be parameterised for each of the three study systems. This parameterisation

allows  us  to  make  qualitative,  and  in  some  cases  also  quantitative,  predictions  for

chemodiversity patterns (i.e., patterns of allele frequencies and genotype-phenotype maps)

to be expected in the three study species (third year). These models will provide insight

into potential evolutionary explanations for plant chemodiversity and will allow generating

new hypotheses to be experimentally tested in a potential second funding period.

In conclusion, our combined approach will substantially contribute to our understanding of

how plant chemodiversity varies across different levels, how such chemodiversity affects

interactions with other antagonistic and mutualistic organisms and how it is maintained.

Research data and knowledge management

In  addition  to  routine  communication  (by  e-mail,  phone  and  Skype),  we  will  use  the

following means to ensure an efficient and stimulating exchange of knowledge:
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Internal data sharing platform and data management: We have established a project

share  box  in  Sciebo  (cloud  storage  platform  of  research  institutions  in  North  Rhine-

Westfalia, guest status for members of the RU via Bielefeld University). This share box

serves as  the platform for  data  integration  and management  and for  the  exchange of

method protocols within our group.

Public  data  repositories:  We  will  create  a  detailed  data  management  plan  that  will

address all questions regarding data capture, storage, back-up, documentation, publication

and long-term archiving of data collected at the beginning of this project. The Research

Data  Management  Competence  Center  of  Bielefeld  University  will  assist  the  RU  in

developing procedures for Findable, Accessible, Interoperable, and Re-usable (FAIR) data

during the project.  Raw data of ecological  and environmental  parameters will  be made

available by publication with digital object identifiers (DOI). Modelling and simulation code

will  be  placed  under  an  open  source  licence.  For  both  data  and  code,  we  will  use

repositories such as dryad or  figshare,  institutional  repositories,  or  upload the material

directly as supplementary information. Metabolomics and RNA-seq data will be uploaded

to  the  corresponding  repositories.  MetaboLights  is  an  open-access  database  for

metabolomics experiments assigning studies a unique accession number as publication

reference.  Adhering  to  best  practices  in  metabolomics  data  sharing  will  be  done  in

collaboration  with  the  de.NBI  MASH  project  (Steffen  Neumann,  IPB  Halle).  Steffen

Neumann offered  his  support  to  the  RU.  Prior  to  the  upload  of  RNA-seq  data  to  the

European  Nucleotide Archive  (ENA)  or  gene  expression  omnibus  (GEO),  data  will  be

stored in a network file system with automated back-ups (Bräutigam). Thus, all data and

code connected to publications will be shared according to FAIR principles, available long-

term and be quotable by DOIs.

Potential impact on the research area and local environment

All PIs involved in the RU are leading experts in their field and their home institutes have a

high scientific reputation. Several researchers within the envisaged RU collaborate already

successfully as evidenced by joint publications (see (Joint) preliminary work). Between and

among researchers, the discussions leading to the RU have spawned collaborative efforts,

which  will  strengthen  over  time,  bringing  the  researchers  and  their  institutions  closer

together and leading to fruitful collaboration. With this RU, we expect to become nationally

and internationally visible as a scientifically strong consortium working on intraspecific plant

chemodiversity. At the same time, we expect that our consortium will  have a significant

impact on the international community of chemical ecologists by building bridges among

research disciplines, study organisms and study levels to achieve common overarching

goals. This will happen when RU members present their work at international conferences,

via publications  in  international  journals  including  special  issues  on  chemical  diversity

edited by the applicants, and by means of our workshops with national and international

guests.
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Measures to advance research careers

Early career researchers 

The proposed RU includes several young scientists as PIs (Eilers, Steppuhn, Unsicker,

Wittmann), who made already major contributions in their fields. Eilers joined the group of

Müller in 2016 and is building up her independent research while pursuing a habilitation.

Steppuhn was promoted to a W2 position (non-permanent) at Free University of Berlin in

2017. Unsicker is currently working on her habilitation. Wittmann started a position as Jun.

Prof.  (tenure-track)  in  2017  at  Bielefeld  University.  A  successful  participation  in  an

internationally  respected  RU  will  increase  the  visibility  of  these  young  researchers,

advance their  careers and increase their  chances to be tenured.  Wittmann will  be the

Deputy Speaker of the RU, offering her the opportunity to gain experience in leading a

large collaborative DFG-funded project.

Doctoral programmes 

The  young  investigators  employed  in  this  RU  will  profit  from  structured  doctoral

programmes  established  at  all  involved  universities,  iDiv,  Helmholtz  and  MPI-CE.

Furthermore, they will choose a second mentor who is a PI in the RU but not their direct

supervisor. The mentee will meet with her/his second mentor at least twice a year and will

discuss the ongoing work,  planning of  experiments and manuscripts as well  as career

prospects. Financed by the travel budgets of the individual projects (P1–P10), the young

investigators will be enabled to present their research to the scientific community and to

network at national and international conferences.

Gender equality, career and family 

Our PIs can serve as role models in various ways. Seven out of 10 (70 %) of our PIs are

female and can serve as role models of successful female scientists. Several of our PIs

(see CVs) can demonstrate to young scientists that it is possible to raise children and be

successful  in  academia.  When  hiring  young  investigators  for  the  projects,  a  balanced

gender ratio will be strived for. Female junior scientists will be encouraged to participate in

mentoring programmes and soft skill  workshops adapted to the particular challenges of

women in science such as movement (Bielefeld University) or Minerva-FemmeNet (MPG).

All involved institutions have policies in place to ensure gender equality and family-friendly

work conditions. Additionally, funds are requested for flexible childcare and home office

supplies  for  all  scientists  with  care  tasks  (for  details  see  Project-specific  Workshop

Module).  Furthermore,  PIs  will  raise  their  awareness  about  the  diversity  of  students

(different genders, cultural backgrounds, etc). They will promote equality in chances and

work against discrimination and under-representation by taking part in trainings offered by

their institutions and staying informed via, e.g., https://www.working-between-cultures.com.
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National and international cooperation and networking

The networking mechanisms described above (Expected benefits of collaboration within

the RU) and the planned retreats and workshops (see below) will establish our RU as a

national research consortium leading this field. National and international scientists will be

invited to our workshops to stimulate discussions about chemodiversity in our scientific

community and to encourage our young investigators to start building scientific networks.

Furthermore,  participation  in  international  conferences  such  as  the  Gordon  Research

Conference  on  Plant-Herbivore  Interaction  as  well  as  meetings  with  a  focus  on  plant

ecology and evolution will stimulate international cooperation and networking.

Coordination

Description of how joint objectives and the joint work programme will be

implemented in the coordination project 

The coordination project and thus the speaker of the RU will facilitate the communication

(including data management) and cooperation among the geographically dispersed groups

and their research teams. The communication within the RU is based on regular meetings

of all members but also on exchange between individual groups. For exchange between all

groups and the scientific community, retreats and workshops will be coordinated as listed

below. Exchange among individual groups will be mostly realised by mail, phone and skype

or potentially video conferences. Webinars may enable virtual participation in seminars of

general interest. For method standardisation, a ring trial for volatile collection is planned

(see Coordination Module, Fig. 3), which will be coordinated in the central project. Similar

ring  trials  or  method  adjustment  will  also  be  implemented  for  other  techniques,  e.g.,

metabolomics.

Anticipated total duration of the project

Three years.

Requested modules

Coordination Module

For administrative assistance as part of coordination, we apply for one service assistant

(TVL E8, 50 %) for the speaker of the RU, Müller. The service assistant will provide the

services  for  the  administrative  management  of  the  RU,  manage  the  central  budget,

administer the common website and shared data platform (Research data and knowledge

management) as well as help in scheduling, organising and implementing the retreats and

workshops.
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Furthermore, a student assistant (10 h/week for 36 months) is requested who will be

involved in the following three tasks:

• Structuring of data and metadata format for data to be collected by all groups and

stored  centrally;  support  in  data  upload  and  management  (student  with

bioinformatics background)

• Support in preparation and cultivation of T. vulgare clones used in the projects P5–

P8 

• Coordination of ring trial (preparation of material, comparative data analysis):

At the beginning of the RU, we plan a ring trial of volatile collection by PDMS and analysis

by thermodesorption (TD)-GC-MS. Clones of T. vulgare will be distributed by P5 and P6 to

different groups (Fig. 3). Each of these groups will receive a set of PDMS tubes and a set-

up for volatile collection. Volatiles will be collected in technical replicates from the plants on

PDMS tubes (control  plants and plants infested with 3  instar  larvae of  the generalist

Spodoptera  littoralis,  provided by  P1).  These tubes will  be  sent  by  each group to  the

groups with a TD-GC-MS. The volatile data will then be compared. This work will help us to

clarify and validate, at the beginning of the project, how comparable analyses among our

labs are. It will also train the PhD students involved in the projects in volatile collection and

methodological challenges. We expect to jointly publish the data of this ring trial as a short

communication in an open access journal.

Metabolomics platforms exist in several groups. The PIs of the individual projects have

made individual agreements where they will run their analyses for an efficient division of

resources and instrument time over the various labs. The PIs leading the platforms will be

in  regular  exchange  of  expertise,  methods  and  protocols.  For  ready  comparison  of

metabolome  data  gathered  by  the  different  groups  we  will  establish  common  sample

preparation  and  measurement  methods,  as  far  as  possible.  Moreover,  Schnitzler  in

collaboration  with  Philippe  Schmitt-Kopplin  (Helmholtz  Zentrum  München)  established

novel  analytical  methods such as mass difference networks,  which can be applied on

metabolomics and transcriptomics data sets.  Schmitt-Kopplin will  offer  his expertise for

data analysis in various projects.

RNA-seq analysis: An RNA-seq platform followed by single nucleotide variation (SNP)-

based  population  analyses  will  be  offered  by  Bräutigam.  The  platform  includes  the

analytical  set-up for  quantitative  transcriptome analyses of  non-model  species  and the

analytical  set-up for transcriptome assembly,  SNP discovery and quantification. We will

offer a three-day RNAseq workshop ("Hackathon") to effectively transfer knowledge within

the RU.

Advisory  Board:  We will  set  up  an  Advisory  Board  of  three  experts  in  the  field  with

international reputation. These Board members will be invited to the workshops and may

potentially host a young investigator for a lab visit and training in their lab.

Lab exchange of young investigators: The young investigators will be encouraged to

visit  other labs of PIs of the RU and beyond (e.g. potentially members of the advisory

rd
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board) to be trained in methods that are important for their projects. For these visits, we

apply for a lump sum of 15,000 €.

Network Funds Module

We aim to share metabolite standards and buy new standards, which will be distributed to

all  analytically  working  groups,  to  expand  our  databases  needed  for  metabolite

identification. To realise this goal we apply for a 10,000 € lump sum.

Gender Equality Measures in Research Networks Module

All participating institutions have explicit policies in place to ensure gender equality and

family-friendly  work  conditions.  These  existing  support  structures  and  services  will  be

strengthened by the following provisions:

• Flexible childcare and home office supplies for all scientists with care tasks

• Childcare during conferences or other events organised by the RU

• Flexible funds for,  e.g.,  compensation for  the absence of  a  RU member during

pregnancy, care tasks for sick family members or parental leave

• Workshop  on  how  to  train  a  wide  diversity  of  students  and  promote  equal

opportunities at all levels

• Specific communication trainings empowering young scientists to deal with implicit

bias and micro-aggression, e.g. Active Bystander training by Scott Solder (http://

www.scottsolder.com/)

For these measures, we apply for a lump sum of 15.000 € p.a.

Project-specific Workshop Module

Yearly retreats: All PIs and the young investigators involved in the projects will meet at

least once per year for a 1-2 day retreat, which will be combined with a workshop. These

retreats will be used to align the projects and to synthesise the most important findings and

achievements  of  the  RU.  The  young  investigators  will  present  their  data  to  allow  for

feedback of other members of the RU and invited guest speakers. Guest speakers will give

valuable input to the RU by reporting on adjacent topics. Furthermore, we will organise a

“science speed dating” event where each young investigator talks for 5 min to each guest

speaker (of course in the hope that longer conversations will follow) to improve networking

skills and to get advice on academic careers. The young investigators will be encouraged

to organise an own programme block directly before or after the retreat and workshop, in

which  they  may  exchange  without  their  PIs  and  organise  personal  or  scientific

development courses depending on how they choose to allocate their time and financial

support. For these young investigator modules, we apply for a lump sum of 5,000 € p.a.

Having responsibility for the budget and the content will allow the young investigators to

develop responsibility and deepen their scientific interactions while at the same time the

self-developed programmes will address their actual needs.
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Workshop  1:  In  the  first  year,  we  plan  to  organise  a  workshop  on  the  topic  “Plant

Chemodiversity”  to  discuss  the  most  useful  chemodiversity  measurements  and indices

developed by project P10 based on data provided by P1–P7. This workshop will be hosted

by  Junker  in  Marburg  and  international  experts  in  biodiversity,  chemical  ecology  and

handling of complex metabolomic datasets will be invited.

Workshop 2: In the second year, the workshop will focus on “Evolution of Chemodiversity”

and will be chaired by Wittmann. The workshop will take place in Leipzig at the German

Centre  for  Integrative  Biodiversity  Research  (iDiv)  and  co-organised  by  van  Dam and

members of  her  group.  Guest  speakers  will  be invited to  discuss with  us  causes and

consequences of chemodiversity.

International Workshop 3: A third workshop aims to discuss the findings of the RU in an

international context. The “Synthesis” of our findings will be presented and discussed with

international experts and we aim to write a joint paper on “The ecology and evolution of

plant  chemodiversity”. The  workshop  will  be  held  at  the  Centre  for  Interdisciplinary

Research (ZIF) of Bielefeld University and will be co-hosted by Eilers and Müller. At least

15 national and international experts in this field will be invited. To co-fund this workshop,

we will also apply for funding at the ZIF.

Hackathon: In addition to the workshops, a “Hackathon” will be offered in the second year,

which  will  be  organised  by  Bräutigam,  with  input  from  Schnitzler  and  van  Dam.  All

members  of  the  RU  will  gather  insight  in  transcriptome  assembly,  quantification  and

analyses for application in ecological and evolutionary concepts. The participants will meet

in a conference room equipped with computers directly linked to the compute cluster at

CeBiTec,  Bielefeld  University,  and direct  data  access.  Jointly,  we will  handle  our  data,

share methods, scripts, programmes and ideas, pursue wild ideas and push our projects

forward.  This  hackathon  will  foster  interactions  among  the  researchers  which  will

strengthen the collaborations and give us room to try new and unusual approaches and

share and develop new ideas.

Public Relations Module

A website will be established to advertise the general aims of our planned RU and to briefly

introduce  the  aims  of  the  individual  projects  potentially  interesting  to  the  scientific

community  as  well  as  the  public.  The  content  will  be  regularly  updated  with  current

information, results, ideas and data from our projects. The estimated costs for this website

will  be around 3,000 €,  to engage a professional  to ensure a functional  and attractive

website that increases visibility. Dissemination of information to the group and the public

will also make use of Twitter. Press releases will be issued on fundamental results via the

press offices of the institutions.

In  addition,  we  will  train  the  PIs  and  especially  the  young  investigators  in  science

communication  via the  Public  Engagement  Training  offered  by  City2Science (Herford,

Germany). This training will be held in Bielefeld and will include sessions from “Science in

Society” to “Responsible Research and Innovation” as well as sessions about the personal
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advantages  and  best  practice  examples  of  science-society  dialogues.  Furthermore,

participants will  design a dialogue-oriented communication idea for their research topic,

which they then can present to the lay public at science fairs like the GENIALE in Bielefeld

or the Long Night of Science in Leipzig and Jena. The costs for the training itself are 2,400

€ plus an estimated cost of travel (200 € × 12 participants from outside of Bielefeld) and

accommodation (80 € × 12 participants × 2 nights) of 4,320 € (Total: 6,720 €).

Funding program

Research Unit of Deutsche Forschungsgemeinschaft

Grant title

FOR3000

Conflicts of interest
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