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Abstract

Programming  a  computer  is  an  activity  that  can  be  very  beneficial  to  undergraduate
students in terms of improving their mental capabilities, collaborative attitudes and levels of
engagement in learning. Despite the initial difficulties that typically arise when learning to
program, there are several well-known strategies to overcome them, providing a very high
benefit-cost ratio to most of the students. Moreover, the use of a programming language
usually raises the interest of students to learn any specific concept, which has caused that
many  teachers  around  the  world  employ  a  programming  language  as  a  learning
environment to treat almost every possible topic. Particularly, mathematics can be taught
and learnt while using a suitable programming language. The R programming language is
endowed with  a  wide range of  capabilities  that  allow its  use  to  learn  different  kind  of
concepts while programming. Therefore, complex subjects such as mathematics could be
learnt  with  the  help  of  this  powerful  programming  language.  In  addition,  since  the  R
language  provides  numerous  graphical  functions,  it  could  be  very  useful  to  acquire
simultaneously basic plane geometry and programming knowledge at the undergraduate
level. This paper describes the LearnGeom R package, a novel pedagogical tool, which
contains multiple functions to learn geometry in R at different levels of difficulty, from the
most basic geometric objects to high-complexity geometric constructions, while developing
numerous programming skills.

‡ §

© Briz-Redón Á, Serrano-Aroca Á. This is an open access article distributed under the terms of the Creative Commons Attribution
License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author
and source are credited.

https://doi.org/10.3897/rio.4.e25485
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.4.e25485&domain=pdf&date_stamp=2018-4-5
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.4.e25485&domain=pdf&date_stamp=2018-4-5
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.4.e25485&domain=pdf&date_stamp=2018-4-5
mailto:angel.serrano@ucv.es
https://doi.org/10.3897/rio.4.e25485


Keywords

Mathematics  Education;  Geometry  Education;  Computational  Thinking;  Programming
Language; R package

Introduction

In the field of informatics, programming is the activity that basically consists of translating
from human language to the language understood by a computer McCracken (1957).

In addition to its inherent importance in the computational sciences, learning to program
provides powerful  strategies for thinking, designing and solving problems Booth (1958),
Howe et al. (1981), Soloway (1993). In fact, these authors describe a two-phase process,
consisting of finding the problem solution and then rewriting this solution in an alternative
and precise language that can be understood by the computer.

The nature of programming provides certain advantages to the user that very few mental
activities can offer. For example, it allows the programmer to explore thinking processes,
improve  logical  reasoning  and  increase  capacity  to  correct  mistakes  Papert  (1980).
Moreover, the practice of programming is highly correlated with the development of a good
linguistic  capacity  and,  consequently,  with  a  better  academic  performance  Lehrer  and
DeBernard (1987), Palumbo (1990).

There are  multiple  studies  that  have confirmed the benefits  of  programming on young
students. For example, already in the early 1970s, it was concluded in a survey conducted
by Feurzeig et al. 2011 that the use of LOGO programming language could enhance the
reading ability of some students, as well as increasing the interest in learning and the level
of self-confidence of many of them.

At the same time, there is little disagreement about the declaration of programming as a
complex activity Govender (2009). More precisely, Du Boulay (1986) identified five kinds of
difficulties:  lack of  orientation,  ignorance about the machine being employed (usually  a
computer),  inadaptation  to  the  language,  problems  of  comprehension  and  absence  of
method. Although these five frequent difficulties are interconnected, students specially tend
to have problems with the programming language itself. Language's syntax, that is, the
collection of words and symbols that allow a human to communicate with a machine, can
be excessively rigid to a novel user of a programming language. In connection with the
syntax, the meaning of each of its elements forces the students to carry out processes of
abstraction and reasoning that they are not always able to assume, deriving sometimes in
misconceptions and wrong analogies Spohrer et al. (1985). Furthermore, it is really difficult
to teach students to systematize their programming practices in order to be more efficient
and  make  less  mistakes.  In  this  regard,  the  common  stages  recommended  when
programming could be summarized as follows: problem approach, language development,
testing and correction/improvement.
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In view of all these difficulties, what strategies should be followed for the correct teaching of
programming? While being aware that each student learns in a different way, there are
some accepted strategies in order to reduce, at least to a certain extent, the difficulties that
arise when programming. In the first place, the choice of the programming language is key.
The basic operating rules and the rigid syntax are common to all programming languages,
but not all  of them are equally accessible, especially from the point of view of a totally
inexperienced user. The wide variety of languages available today, the majority of which
are free software, render this task much easier.

Once the language has been conveniently chosen, different strategies can be carried out.
Some methodological examples of successful programming teaching approaches include:
simplifying  and dividing  problems into  simpler  sub-problems,  defining and explaining  a
model based on the machine-language environment in which the student is working Statz
and Miller (1978), slightly modifying sets of instructions to solve similar problems Linn and
Dalbey (1985), or constantly addressing applied problems.

Learning through the use of  a  programming language can result  more interesting  and
exciting for a student, and explains somehow why it has been used to teach and study
mathematics  during  the  last  decades,  with  overall  successful  results,  as  described  by
Wang et  al.  (2015).  In  addition,  the use of  programming as a learning vehicle favours
collaboration  between  students  and  the  development  of  competencies  related  to
autonomous learning Falloon (2016).

Currently,  there  are  already  some  languages  and  programs  focused  on  mathematics
learning and teaching at  undergraduate level,  being Scratch Resnick et  al.  (2009) and
GeoGebra Hohenwarter (2002) two of the most important by far.

Scratch possesses most of the common features that are associated to a programming
language. However, its style is predominantly graphical, which differs to the vast majority of
programming languages. This graphical orientation clearly reduces the initial difficulty of
learning to program, but also avoids the development of some other programming skills
usually acquired in the classical educational way.

The ScratchMaths project Benton et al. (2016) was developed in four schools located in
London  with  students  aged  9  to  11  years  to  learn  mathematics  through  Scratch
programming on four basic objectives: to explore, explain, predict and share. This project is
still in progress and has recently shown that the correct design and sequencing of activities
around a mathematical concept, together with the continuous help of specialized teachers,
allows students to learn with interest and in a meaningful way Benton et al. (2018).

In addition, researchers such as Foerster (2016) and Akpinar and Aslan (2015) proved that
the application of the Scratch language to teaching mathematics can be very successful.
Thus, Foerster (2016) applied this Scratch programming methodology in a class of about
11-year-old  students  while  developing  mathematical  concepts  related  to  polygon
congruence  and  tessellation  construction.  The  results  of  this  study  showed  that  the
learning process run very smoothly and pleasantly for the students, and after about two
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years, the students achieved an excellent knowledge of geometry in comparison with the
other  students  who did  not  follow this  pedagogical  methodology.  These results  clearly
demonstrate  the  possible  long-term positive  effects  that  this  learning  methodology  can
produce. In the same line of research, Akpinar and Aslan (2015) applied Scratch language
to create a learning environment that allowed the study of probability. Although Scratch
does not have specific elements for dealing with probabilistic concepts, the implementation
of experimental and simulated situations was really helpful to improve students' proficiency
in this branch of mathematics. The tests carried out before and after the sessions showed
that the students significantly increased their knowledge of probability. At the same time,
the sessions allowed students to exploit their creative facets by designing multiple games
associated with random experiments.

On the other hand, GeoGebra is dynamic mathematics software, which brings together
geometry,  algebra,  spreadsheets,  graphing,  statistics  and  calculus  in  one  easy-to-use
package.  Several  works  confirm the  advantages  of  using  GeoGebra  at  undergraduate
level. Zengin et al. (2012) designed an assisted instruction of trigonometry with GeoGebra
that resulted more effective than the classical approach, based on constructionist theory. In
the same way, Priatna (2017) showed that students being taught with the aid of GeoGebra
significantly outperformed students subject to classical education in terms of mathematical
representation  ability.  Other  researchers  such  as  Akkaya  et  al.  (2011)  proposed  the
learning  of  symmetry  with  GeoGebra,  facilitating  students  to  visualize,  generalize  and
share with their classmates, producing an active and collaborative learning environment.
Very recently, Masri et al. (2017) tested GeoGebra with some degree of success with a
group of Malaysian students, whose mathematical level was later compared to students of
the same year that had followed traditional teaching techniques. Despite there were not
found  significant  differences  between  the  two  groups  of  students  regarding  the
mathematical level acquired, students that were taught with GeoGebra clearly appreciated
the use of this program during the development of the lessons. Finally, a very interesting
finding was achieved by Saha et al. (2010). The use of GeoGebra to teach plane geometry
did not appear as significantly better for students already possessing a high visual-spatial
ability, when compared to students being taught without the help of the program. However,
these differences were clearly revealed when considering students with a low visual-spatial
ability, confirming the positive effects of using this software.

Another programming language, which is currently very popular is R Team (2018). This
language, even though it has always been conceived as an environment for performing
statistical analysis, is also endowed with a wide range of capabilities that allow its use to
learn different kind of concepts while programming. Therefore, complex subjects such as
mathematics could be learnt with the help of this powerful programming language.

For  example,  Pruim  et  al.  (2017)  have  recently  developed  the  Mosaic  project,  which
integrates a set of functions to facilitate the introduction of basic statistics and data science
concepts such as visualization, modelling and simulation. Other authors such as Mascaró
et al. (2014) and Mascaró et al. (2016) have shown how beneficial can be for a university
student to be taught statistics with the aid of the R language, in terms of understanding and
engagement to the subject matter.
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In addition, since the R language provides numerous graphical functions, it can be very
useful to simultaneously acquire basic plane geometry and R programming knowledge at
the undergraduate level.

Therefore, in this work we present a novel pedagogical tool to simultaneously learn plane
geometry and programming based on R, which we have denominated LearnGeom. This
tool is available for secondary school teachers, which may be interested in teaching plane
geometry and R programming skills at the same time, and may desire to complement the
use of other languages and software with this R package. It can be downloaded once the R
programming language is installed in your computer (https://www.r-project.org) and after
typing  install.packages(LearnGeom) in  the  program  console  to  install  the  developed
LearnGeom  R  package.  The  LearnGeom  R-package  can  also  be  found  as  a  github
repository in Briz-Redón and Serrano-Aroca (2018).

Basic functions of the package

The LearnGeom R package provides basic functions to treat plane geometry. Therefore,
the  user  is  expected  to  work  on  a  coordinate  plane  in  order  to  manipulate  different
geometric objects and constructions. Thus, the function CoordinatePlane allows the user to
plot an empty coordinate plane with customizable limits for the X and Y axis. For example,
CoordinatePlane(-5, 5, -5, 5) can be typed to set a coordinate plane in the range [-5,5] x
[-5,5],  which is  the one used for  most  of  the examples included in the paper.  Once a
coordinate plane is started, different geometric objects can be created and plotted on it.
The basic geometric objects that can be utilised in this version of the package are five:
points, segments, arcs, lines and polygons.

All of them can be plotted in the coordinate plane with function Draw, and the appropriate
use of the methods that R offers can lead to different mathematical concepts and many
kind of geometric problems. A point can be created by simply defining a two-dimensional
vector in R, e.g., P = c(0,0) for the usual origin of coordinates. This definition is also used
for the creation of a geometric vector to determine a direction in the plane. The coincidence
of both definitions also exists if classical mathematical notations are followed. Therefore, it
should not be a source of confusion for the user.

The first method to define a segment in the plane, which is the most basic one, consists of
the choice of two points of the plane, P and Q, and applying the shortest path (in euclidean
distance) to connect them. There is another common method to define a segment in the
plane:  from  a  starting  point,  choosing  an  angle  and  a  length  for  the  segment.  Both
possibilities  can  be  achieved  with  the  CreateSegmentPoints and  CreateSegmentAngle
functions of the package. A line, as a segment, can be defined from two points, or from a
point  and  an  angle.  Moreover,  there  is  a  standard  combination  of  parameters  to
characterize  every  line  in  the  plane:  the  slope  and  the  intercept.  For  this  reason,
CreateLinePoints and  CreateLineAngle functions  return  a  two-dimensional  vector  that
contains the slope and intercept of the line, regardless of the way it is defined. The use of
the pair slope-intercept has a problem with vertical lines, which are parallel to Y axis. In the
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case that the user defines a line of this kind, with any of the two available functions, the
returning object will be a string two-dimensional vector. It will include the word "Inf" for the
first  position  (infinite  slope)  and the  constant  X-value  for  the  line  in  the  second (as  a
character).

Function Parameters Geometric object 

CreateArcAngles C, r, angle1, angle2, direction Arc 

CreateArcPointsDist P1, P2, r, choice, direction 

CreateLineAngle P, angle Line 

CreateLinePoints P1, P2 

CreatePolygon List of points Polygon 

CreateRegularPolygon n, C, l 

CreateSegmentAngle P, angle, l Segment 

CreateSegmentPoints P1, P2 

An  arc  is  simply  a  part  of  a  circumference,  or  even  the  circumference  itself.  The
CreateArcAngle function allows the user to make an arc from a circumference with four
parameters to choose: the center of the circumference, the radius of the circumference and
the two angles, from 0 to 360 degrees that determine the part of the circumference to be
plotted. Another possibility to create an arc in the plane consists of connecting two points.
The CreateArcPointsDist function allows the user to connect any two given points in the
plane by an arc. Of course, there are many (infinite) arcs that pass through every two
points in a plane. The parameter radius fixes a radius for the arc to be built. If the selected
radius is smaller than half the distance between the points, the problem has no solution
and no arc is produced (a message is shown on the screen to inform the user).

Polygons are closed figures made of a finite number of points (there must be 3 points at
least). The segments that join the points of a polygon are called the sides of the polygon,
and  each  of  the  sides  must  intersect  only  at  the  two  points  that  connects  (auto-
intersections are not allowed in a polygon). It is usual to represent a polygon by an ordered
list of points, which indicates the way the points are connected. For example, if a polygon is
represented by a list of points [P1, P2,P3], it means that the three segments of this polygon
(a triangle) join P1 with P2, P2 with P3 and P3 with P1. The CreatePolygon function admits
any finite number of points to produce a polygon, which corresponds to the definition of a
polygon as a list of points. It is important to introduce the points in a certain order to get the
desired output because the same combination of points can lead to different figures. In

Table 1. 

The basic functions available in the LearnGeom R package to create geometric objects and the
parameters that must be used to precisely define these objects. The third column refers to the
geometric object that is created by each of the functions, which is also the class that the functions
assign to their outputs.
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order  to  make  a  polygon  without  self-intersections,  the  points  must  be  passed  to  the
function  following  a  clockwise  (or  counterclockwise)  direction.  Moreover,  this  function
includes a procedure to detect collinearity between the points, which makes the function to
show the message "Some of the inserted points are collinear. This could lead to a defective
polygon" when this occurs. If the user is interested in building a regular polygon given its
center, number of sides and side length, the CreateRegularPolygon function can do it.

Function Parameters description 

CreateArcAngles C - Center for the circumference which generates the arc

r - Radius for the circumference which generates the arc

angle1 - Angle (0-360) from which the arc starts

angle2 - Angle (0-360) at which the arc arrives

direction - Clockwise or anti-clockwise direction to properly define the arc

CreateArcPointsDist P1 - Point 1 to be joined by an arc to point 2

P2 - Point 2 to be joined by an arc to point 1

r - Radius for the arc being built

choice - Integer which allows the user to choose every arc from two possibilities

direction - Clockwise or anti-clockwise direction to properly define the arc

CreateLineAngle P - Point through which the line passes

angle - Angle (0-360) that the line must form with X-axis

CreateLinePoints P1 - Point 1 to be joined by a line to point 2

P2 - Point 2 to be joined by a line to point 1

CreatePolygon ... - Ordered list of points to build the polygon

CreateRegularPolygon n - Number of sides for the polygon

C - Center for regular polygon

l - Side length for the polygon

CreateSegmentAngle P - Starting point for the segment being built

angle - Angle (0-360) that the segment must form with X-axis

l - Length for the segment

CreateSegmentPoints P1 - Point 1 to be joined by a segment to point 2

P2 - Point 2 to be joined by a segment to point 1

Table 2. 

Short  description  of  all  the  parameters  available  in  the  basic  functions  of  the  LearnGeom  R
package.
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It is quite simple to make these objects with basic graphical R functions. However, the goal
was to create a homogeneous group of functions with a minimal number of parameters.
Although the already existing functions in the R language are simple for a programmer,
they may contain too many parameters for a novice user. Moreover, it is essential to define
the functions with a little number of parameters in order to highlight the different existing
methods to define the same geometric object.

Finally, the Draw function is programmed to be able to accept all kind of geometric objects
as a parameter. This fact seems to be essential to understand geometric ideas because of
providing the user a quick and intuitive tool to easily visualize while programming. The only
visible difference among the different  geometric  objects and Draw function occurs with
polygons. This function adds, only for polygons, the option of using two colours and the
possibility of inserting labels at each of the points of the object.

Geometric object Data type Object fields 

Arc Vector X – X-coordinate for the center of the arc

Y – Y-coordinate for the center of the arc

r – radius of the arc

angle1 – Angle (0º-360º) from which the arc starts

angle2 – Angle (0º-360º) at which the arc arrives

dir – 1 for anti-clockwise direction, 2 for clockwise

Line Vector slope – Slope of the line

intercept – Intercept (Y-axis cut) of the line

Polygon Matrix X – X-coordinates for the points that are part of the polygon

Y – Y-coordinates for the points that are part of the polygon

Segment Matrix X – X-coordinates for the two points that form the segment

Y – Y-coordinates for the two points that form the segment

As a summary, Table 1 describes the eight basic functions included in the package to
create geometric objects.

A brief explanation of the parameters which are associated to each of these functions can
be found in Table 2.

Table 3. 

Information contained in each of the possible objects that are produced by the basic functions. As it
is shown in the table, the outputs of these functions are basically a vector or a matrix which contain
the points that make the geometric object or the parameters that define the object unambiguously.
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Table 3 clarifies the structure of the outputs produced by each of the functions and the
information which they provide about the geometric object that they represent.

a b

c d

e f

Figure 1. 

Several examples of use of some of the basic functions included in the LearnGeom R package
with their required lines of code to produce them.
a: Three polygons created with the CreatePolygon function. 
b: Regular polygons with 9 or less sides created with CreateRegularPolygon. 
c: Example  of  use  of  the  RemovePointPoly  function.  A  point  is  removed  from  a  regular
pentagon. 
d: Example of use of the AddPointPoly function. A point is added to a regular pentagon. 
e: Examples of use of the CreateArcAngles function. The red arc follows the anti-clockwise
direction; the blue one the clockwise direction. 
f: Examples of use of the CreateArcPointsDist function. The combination of the parameters
direction and choice allows the creation of four different arcs 
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Fig.  1  contains  examples  of  use  of  several  functions  of  the  LearnGeom  R  package,
including some of the R instructions needed to use them and their graphical outputs. Fig.
1a  shows  three  polygons  of  3,  4  and  5  sides  that  can  be  freely  defined  with  the
CreatePolygon function. Fig. 1b includes the first nine regular polygons as can created by
the function CreateRegularPolygon with lengthside l = 1 and varying center. Fig. 1c, d also
contains  examples  of  removing  and  adding  points  with  the  RemovePointPoly and
AddPointPoly functions, along with the lines of code required to obtain these polygons after
a  regular  pentagon  (Penta)  is  defined.  Fig.  1e,  f  show  examples  of  use  of  the
CreateArcAngles and CreateArcPointsDist functions,  which attempt to clarify  the use of
each oftheir parameters.

a b

c d

Figure 2. 

Examples of use of the specific functions for lines and segments creation. The coincidence in
the  outputs  is  due  to  the  choice  of  equivalent  parameters,  which  are  visible  in  their
corresponding figures.
a: Example of use of CreateSegmentAngle. 
b: Example of use of CreateSegmentPoints. 
c: Example of use of CreateLineAngle. 
d: Example of use of CreateLinePoints. 
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Fig. 2 contains a couple of examples of use of the specific functions available for creating
lines and segments, including the required R code. This figure shows that both lines and
segments are the same because the introduced parameters are equivalent. Depending on
the situation and the available information, users may find one or the other one as the most
suitable tool.

Moreover, if a more experienced user of the language aims to create a line by specifying its
slope and intercept, even though there is no function in the package to perform this, it can
be  achieved  by  simply  defining  a  two-dimensional  vector  containing  these  basic
parameters of the line and appending the class Line to it. This also applies to the other
three geometric objects. However, this is not the use of the package we would expect for a
new user of it. The rest of this paper contains multiple examples of use of some functions
of  the  package that  have  not  been  mentioned  yet  and  several  applications  which  are
possible  to  perform by  combining  classical  geometric  problems,  different  programming
techniques and all  the  functions included in  the package.  These applications are  thus
classified into three categories according to their level of difficulty: basic, intermediate and
advanced.

Basic level

Affine transformations

Affine  functions  are  geometric  transformations  that  preserve  collinearity  and  ratios  of
distances.  LearnGeom  contains  functions  to  apply  six  different  affine  transformations:
homothety,  reflection,  rotation,  shear,  similarity  and  translation.  Each  of  these
transformations is associated with a 2 x 2 matrix, depending on one or several specific
parameters.

All of these functions apply to polygons. However, they also can be used with lines and
segments  in  the  case  of  rotation  and  translation.  For  this  reason,  the  names  for  the
functions related to these transformation miss the word Polygon.

The use of the affine transformations functions included in the package can be seen in Fig.
3. The lines of code that a user needs to type to produce the outputs included in this figure
are also provided. The prior setting of a coordinate plane and the creation and drawing of a
triangle (the blue one in Fig. 3) is needed but omitted for greater clarity. Once a triangle has
been created, each of the transformations can be applied to it, and both the original triangle
and the transformed one can be plotted in the same coordinate plane (in blue and orange,
respectively, in Fig. 3).

Reflection

A reflection needs the definition of a line to be used as the axis of reflection, which can be
built by the CreateLinePoints or CreateLineAngle functions (Fig. 3a).
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a b

c d

e f

Figure 3. 

Examples of use of the functions included in the package that represent affine transformations
in the plane. In all the pictures, the blue triangle, placed at the points A(0,0), B(2,0) and C(1,1),
is the one passed to each of the functions, being the orange triangle the output resulting for
each of the transformations.
a: A reflection. 
b: A rotation. 
c: A similarity. 
d: A translation. 
e: A shear transformation. 
f: A homothety. 
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Rotation

The most familiar parameter related to this transformation is the angle of rotation, which is
defined as 30º this time. However, this angle does not fully characterise this transformation
because it is also necessary the only point remaining fixed after the transformation (for this
example, point (2,0) of the triangle) (Fig. 3b).

Similarity

A similarity only needs the selection of one parameter, k, in the SimilarPolygon package
function. This parameter allows the user to create a polygon similar to the original one,
which can be a contraction (k < 1) or an expansion (k > 1), altering the size of the polygon
without changing its shape (Fig. 3c).

Translation

Translation  simply  represents  the  movement of  a  polygon  in  the  direction  of  vector  v,
conserving the angles and lengths of the initial polygon (Fig. 3d).

Shear and Homothety

Shear and homothety are the remaining affine transformations available in the package.
Even  though  they  are  less  common  and  known  than  the  other  four,  they  offer  many
possibilities to the user.

ShearedPolygon shares parameter k with SimilarPolygon, as both transformations enable a
change  in  the  size  of  the  polygon.  However,  the  transformation  produced  by
ShearedPolygon does not conserve the shape of the object. The direction parameter has
two  possible  values,  horizontal and  vertical,  which  allow  the  deformation  of  the  initial
polygon in the two directions of the plane (Fig. 3e).

On the other hand, the function Homothety can also produce an enlargement or reduction
of a polygon in relation to a point of the plane called the center of the homothety. The
function contains an option to display all the lines that connect the points of the original and
the transformed polygons passing through the center (Fig. 3f).

Points of the triangle

We  can  appreciate  a  combined  use  of  the  package  fuctions  and  the  R  language
capabilities  by  obtaining  a  notable  point  of  a  triangle:  its  circumcenter,  that  is,  the
intersection of its three perpendicular bisector lines.
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Building a triangle and its middle points

For  example,  consider  the  triangle  of  points  (0,0),  (1,1)  and  (2,0).  The  CreatePolygon
function is used for this step. Letters A, B and C are used to represent the three points of
the triangle. It is also convenient to calculate and visualize the middle points of the triangle
sides. The MidPoint function of this package can perform this task (see Fig. 4a).

Orthogonal vectors and auxiliary points

In order to find the bisectors of the sides, it is necessary to find an orthogonal vector to
each of them. Prior to that, the vectors that connect the three points have to be computed
(defined as the difference between the points). Now, one alternative to find the orthogonal
of each of these vectors consists of changing the order of the coordinates and the sign of
one of them, as it is shown in the code in Fig. 4a. Following the orthogonal direction, and
starting from each of the middle points, three auxiliary new points are found (see Fig. 4a).

Lines creation and intersection

The auxiliary points previously obtained are then connected to the middle points of the
sides of the triangle through a line (see Figure Fig. 4b).

As it can be observed in these blocks of code, several functions of the package reduce the
difficulty of some of the steps, allowing the user to focus on the most advanced topics

a b

Figure 4. 

Partial results during the process of finding the circumcenter of the triangle of points (-1,0),
(0,1) and (1,0).
a: Triangle creation and obtention of the middle points of the sides and three auxiliary points in
the orthogonal direction of each of the sides. 
b: Bisector lines and intersection in the circumcenter of the triangle. 

 
 

14 Briz-Redón Á, Serrano-Aroca Á

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300200
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300200
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300201
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4300201
https://doi.org/10.3897/rio.4.e25485.figure4a
https://doi.org/10.3897/rio.4.e25485.figure4a
https://doi.org/10.3897/rio.4.e25485.figure4a
https://doi.org/10.3897/rio.4.e25485.figure4b
https://doi.org/10.3897/rio.4.e25485.figure4b
https://doi.org/10.3897/rio.4.e25485.figure4b


involved in the resolution of the problem, such as orthogonality and operations on points
and vectors.

Intermediate level

Tessellations

A tessellation,  also  known as  a  tiling,  is  a  pattern  that  is  made by  repeating  a  basic
geometric figure, or combination of figures, along a plane Grunbaum and Shephard (1977).
Tessellations  appear  sometimes  in  nature  and  are  often  present  in  architectural
constructions  Lu  and  Steinhardt  (2007).  For  example,  beehives,  the  perfect  structures
created by bees to  produce their  honey,  can be considered as a tessellation made of
regular hexagons. Therefore, with the help of the function Tessellation, a user with some
experience using this package could be able to generate a pattern that reminds a beehive.
Besides, the user could divide the problem into two parts: setting an initial regular hexagon
in  the  plane  finding  two  other  hexagons  that  are  contiguous  to  it  and  a  second  part
consisting of allowing the extension of the pattern to a wider region of the plane by the
appropriate use of the Tessellation function.

Setting an initial hexagon

The process starts with the creation of a regular hexagon in the plane (see Fig. 5a).

Contiguous hexagons

In  order  to  obtain  two hexagons  that  are  contiguous  to  the  initial  one,  Hexa0 can  be
translated in the direction determined by its center and the middle point of the segment that
joins points 1 and 6 (for Hexa1) and the one that joins 2 and 3 (for Hexa2) (see Fig. 5b).

Creating tessellations

The  final  step  requires  the  use  of  the  Tessellation function  with  the  right  separation
parameter (see Fig. 5c). The use of the MidPoint function and visualization are essential for
this task. Moreover, it should be noted that the hexagons are passed to the Tessellation
function  as  a  list.  In  general,  this  fact  allows  to  apply  simultaneously  the  tessellation
function to a set of several polygons. In order to achieve the desired pattern, it  is very
important to set correctly the separation parameter of the function. Otherwise, the resulting
pattern could contain some overlaps, which are uncommon in the creation of tessellations.
Moreover, one could minimize the code to get the Hexa1 and Hexa2 hexagons by using the
ReflectedPolygon function.  It  is  clearly  noticeable  that  these  two  hexagons  must  be
symmetric to Hexa0 about the two lines that connect point 1 with 6, and 2 with 3. The
optimized code and its output is included in Fig. 5d. The two options to create Hexa1 and
Hexa2 seem enough to show that the use of this learning approach could be beneficial to
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improve, simultaneously, geometric thinking and programming skills.As another possible
application, Tessellation could allow the user to attempt a classical mathematical problem:
to complete a plane region by tiling polygons Schattschneider (1981). Some functions of
the package such as RotatedPolygon or TranslatedPolygon would be necessary for this
matter.

a b

c d

Figure 5. 

Different stages of the creation of a beehive structure with the aid of tessellations.
a: Creating a regular hexagon that works as the start of the tessellation. 
b: Creating two contiguous hexagons to the starting one. These hexagons are derived from
the middle points of some of the sides of the initial hexagon. 
c: Once the contiguous hexagons are obtained, function Tessellation allows the creation of the
structure. 
d: Alternative to step in b,  which minimizes the R code required to obtain the output. This
strategy is based on the property of reflection. 
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Working on the real world

The GetMap function of  the RgoogleMaps package gives users  the possibility  to  treat
geometric objects over a plane that represents a piece of the world we live in. The zoom
parameter ranges from 0 to 21, depending on the location, allowing the user to visualize
big pictures of the world but also little details of some buildings.

The function CoordinateImage of this package works as CoordinatePlane. However, in this
case, it is capable of setting the axis and the grid over an image obtained from Google
Maps.  As an illustration,  the approximation of  the British coast  with  a  polygon can be
performed,  which  is  a  problem  that  is  connected  to  the  posterior  definition  of  fractal
Mandelbrot (1967). The last lines of this section contain an R code (in italics) for achieving
this task, in which a polygon of 30 points is created with the aid of the SelectPoints function
of  the  package.  The first  argument  of  the  GetMap function  is  a  vector  containing  the
latitude and longitude, in degrees, which are chosen as the center of the picture. Latitude
and longitude can range from -90º to 90º and from -180º to 180º respectively as usual. A
zoom of 5 is selected for being able to visualize the complete British coast.

> library(RgoogleMaps)

> ima <- GetMap(c(53.404059,-3.351493), zoom = 5, maptype = "satellite")

> ima <- ima[[4]]

> CoordinateImage(-10, 10, -10, 10, ima)

> S <- SelectPoints(30)

> Draw(S, c("transparent","white"))

               

Advanced level

Recursive programming

Recursive programming is one of the most efficient strategies to find the solution of some
problems. However, it is also a difficult task for novice programmers. For quite advanced
students,  recursive  programming  could  be  treated  to  build  a  well-known  mathematical
structure:  a  fractal  Mandelbrot  (1977).  Fractals  are geometric  objects  which satisfy  the
property of self-similarity, which basically means that each of their parts satisfy the same
properties and internal relationships as the complete object does.

As an illustration, this definition can be easily imagined with the help of one of the most
famous fractals:  the Sierpinski  triangle Knaster  and Kuratowski  (1927).  The process of
building this triangle consists of the following steps:

1. Start from an equilateral triangle.
2. Find the middle points of each side of this triangle.
3. Connect the three points obtained in step 2 to obtain a new triangle. This triangle is

also equilateral and rotated 180º with respect to the initial position.
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4. Remove the triangle built in step 2 from the initial triangle. Now you have three little
triangles  inside  the  initial  one.  This  is  the  first  iteration  to  build  the  Sierpinski
triangle.

If the steps 1-4 are repeated in each of these three triangles, nine smaller triangles will be
obtained, which are similar to the previous ones. This is already the second iteration of the
construction and a constant repetition of the steps leads to any iteration of the triangle. The
Sierpinski  triangle  is  theoretically  defined  as  the  infinite  repetition  of  the  steps  1-4.
However, from a practical point of view, we consider interesting only the building of the first
iterations.  This  process can be implemented in  R with a few lines of  code due to the
efficiency  of  recursive  programming  and  some  of  the  functions  contained  in  the
LearnGeom R package. For example, the code available in the following lines (in italics) is
a  possible  approach  to  produce  the  first  six  iterations  of  the  Sierpinski  triangle.  It  is
necessary  to  create  a  function  Sierpinski to  call  it  recursively  during  the  triangle
construction:

> x_min <- -6; x_max <- 6; y_min <- -6; y_max <- 6

> CoordinatePlane(x_min, x_max, y_min, y_max)

> n <- 3; C <- c(0,0); l <- 5

> Tri <- CreateRegularPolygon(n, C, l)

> it <- 6

> Sierpinski <- function(Tri, it){

if (it==1){

Draw(Tri,"black")

}

if (it>1){

Sierpinski(CreatePolygon(Tri[1,], MidPoint(Tri[1,],Tri[2,]), MidPoint(Tri

[1,],Tri[3,])), it-1)

Sierpinski(CreatePolygon(Tri[2,] ,MidPoint(Tri[1,],Tri[2,]), MidPoint(Tri

[2,],Tri[3,])), it-1)

Sierpinski(CreatePolygon(Tri[3,] ,MidPoint(Tri[1,],Tri[3,]), MidPoint(Tri

[2,],Tri[3,])), it-1)

}

}

> Sierpinski(Tri, it)

               
The R code included just displayed is basically the same one that contains the function
Sierpinski of the package. This function allows users to visualize the first iterations of the
fractal avoiding the difficulty of building it (see Fig. 6a). However, for users ready to learn
recursive programming, the best option would be to propose the construction on their own.
The package also contains a function related to the Koch curve, another very well-known
fractal Koch (1904). The most famous version of this fractal is called Koch's snowflake,
which can be obtained by following the next three steps, starting from a segment in the
plane (see Fig. 6b):

18 Briz-Redón Á, Serrano-Aroca Á



a b

c d

e f

Figure 6. 

Examples of different fractals produced with the functions of the LearnGeom package. The
examples obtained with FractalSegment show how minimal modifications of the parameters
can lead to very different curves.
a: First seven iterations of the Sierpinski triangle. 
b: First three first iterations of the Koch's curve. 
c: First five first iterations of the Koch's as obtained with FractalSegment. 
d: A modificaction of the first five iterations of the Koch's (c) by changing parameter angle from
60º to 90º. 
e: A modificaction of the first five iterations of the Koch's (c) by changing parameter f from 1 to
2. 
f: A modificaction of the first five iterations of the Koch's (c) by changing parameters cut1 and
cut2 from 1/3 and 2/3 to 1/5 and 4/5, respectively. 
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1. Divide the segment into three equal segments.
2. Replace the middle segment by the two sides of an equilateral triangle whose side

length  is  the  same  as  for  the  segment  being  removed.  Now,  there  are  four
segments of the same length.

3. Build an equilateral triangle by using the middle segment as its base. Remove this
segment to leave four different segments in the picture.

The continuous application of these steps to each of the new segments that are created
after  each  iteration  produces  every  state  of  the  fractal.  The  FractalSegment function,
available in this package, allows the user to create an infinity number of curves whose
construction  is  based on  these  steps.  The  user  can  experiment  with  cut,  angle and  f
parameters to achieve all kind of fractals (starting from iteration it = 0). The cut parameter
allows a non-equal division of the segments at step 1, however, the angle parameter allows
the user to build more than an equilateral triangle at step 2. Finally, the f parameter, which
is a positive number, produces a length enlargement or a reduction for the new segments
at each iteration. Users are free to try these parameters and produce some fractals like
those shown in figures Fig. 6c, d, e, f. As it can be observed in these figures, the fractal
complexities and diversities are enormous, including auto-intersections. For this reason, to
display fractals for the first iterations is really helpful to better understand the underlying
process of construction.

Generation of curves

A trochoid is a closed curve that can be obtained by the conjunction of three geometric
figures: two circles, from which one of them is fixed and the other mobile, and a mobile
point, which is connected to the mobile circle. There are three parameters to characterize
each trochoid: the fixed circle radius, the mobile circle radius and the distance from the
mobile point to the center of the mobile circle Armon (1996).

The  presence  of  these  parameters  can  be  used  to  define  a  trochoid  as  a  set  of
parametrical equations, involving trigonometry functions. However, as it was first proposed
by Abelson and DiSessa (1986) with the aid of  the LOGO turtle,  these curves can be
approximated by iteratively drawing segments of certain lengths and angles. The LOGO
turtle, which originally was a real robot developed at Massachusetts Institute of Technology
at the end of the 60s, refers to an on-screen cursor implemented in the LOGO language
that was capable of responding to easy instructions from the user (basic direction setting of
the turtle  and rectilinear  movements).  This  turtle  is  also available in  R in  the package
TurtleGraphics.  As  it  is  shown in  the  publication  of  Abelson  and  DiSessa  (1986),  the
procedure to obtain any trochoid needs a pair of angles and a pair of lengths (and an initial
point to start the curve). An iterative process is then defined based on these angles and
lengths, which makes possible the continuous generation of every kind of trochoid.

This package also includes a function called Star, which can be utilised to represent very
different star-like objects as another application of the LOGO turtle also taken from Abelson
and DiSessa (1986). This function is based on the generation of the object by drawing
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segments iteratively as Duopoly. The variation of the parameters included in the function
render possible to understand the basis of the process and can incite the user to achieve
many kinds of  star-like shapes.  Thus,  Fig.  7  represents  some examples of  use of  the
functions Duopoly (Fig. 7a, b, c) and Star (Fig. 7d, e, f). The parameters color and time
available in the function let  the user  to appreciate all  the points  that  are drawn in the
generation of the curve and the order at which they are drawn.

a b

c d

e f

Figure 7. 

Examples of use of the functions Duopoly and Star.
a: Example of use of the function Duopoly. Creation of an astroid. 
b: Example of use of the function Duopoly. Creation of a nefroid. 
c: Example of use of the function Duopoly. Creation of an epicycloid 
d: Example of use of the function Star. Parameter angle is set to 0º. 
e: Example of use of the function Star. Parameter angle is set to 20º. 
f: Example of use of the function Star. Parameter angle is set to 80º. 
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Conclusions

Currently, there are some powerful and useful free software products, such as GeoGebra
and Scratch, to learn geometry at undergraduate level. However, all of them present some
limitations  when  compared  to  common  programming  languages.  Although  the  R
programming language is mainly focused on statistical computing, it can also be employed
as a pedagogical tool for simultaneously learning mathematical concepts and advanced
programming  skills.  In  this  work,  an  R  programming  package  named  LearnGeom  is
presented as a novel  pedagogical  tool  that  provides a set  of  functions to  facilitate  the
exploration  of  plane  geometry  while  programming  in  R.  Beginning  with  some  easy
functions and definitions, the combined use of the functions included in the package with
the  own  capabilities  of  the  language  itself  offers  a  novel  teaching  source  for  current
secondary educators.
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