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Abstract

The synergies between remote sensing technologies and ecological research have opened
new avenues for the study of alien plant invasions worldwide. Such scientific advances
have greatly improved our capacity to issue warnings, develop early-response systems and
assess the impacts  of  alien plant  invasions on biodiversity  and ecosystem functioning.
Hitherto,  practical  applications  of  remote  sensing  approaches  to  support  nature
conservation actions are lagging far behind scientific advances. Yet,  for  some of these
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technologies,  knowledge transfer  is  difficult  due to  the  complexity  of  the  different  data
handling procedures and the huge amounts of data it involves per spatial unit.

In this context, the next logical step is to develop clear guidelines for the application of
remote sensing data to monitor and assess the impacts of alien plant invasions, that enable
scientists,  landscape  managers  and  policy  makers  to  fully  exploit  the  tools  which  are
currently available. It is desirable to have such guidelines accompanied by freely available
remote sensing data and generated in a free and open source environment that increases
the availability and affordability of these new technologies.

Here we present a toolbox that provides an easy-to-use, flexible, transparent and open
source set of tools to sample, map, model and assess the impact of alien plant invasions
using two high-resolution remote sensing products (hyperspectral and LiDAR images). This
online toolbox includes a real case dataset designed to facilitate testing and training in any
computer system and processing capacity.
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Introduction

Biological invasions by non-native, exotic or “alien” species (hereafter IAS; invasive alien
species: http://ec.europa.eu/environment/nature/invasivealien/index_en.htm), often related
to other threats such as land use intensification and environmental change (Turbelin et al.
2016), are considered one of the biggest threats for biodiversity (Vitousek et al.  1997).
Unfortunately, the number of alien species colonizing and impacting ecosystems is likely to
increase (Levine et al. 2003, Seebens et al. 2017) due to the increase in global trade with
dominant pathways for IAS being horticulture and nursery trade (Chapman et al. 2017). In
particular, invasive alien plants (hereafter IAPs) may have significant impacts on ecosystem
functioning. Several studies have analyzed the impact of IAPs on ecosystem structure and
dynamics,  including  impacts  on  nutrient  cycling,  hydrology  and fire  regimes (Ehrenfeld
2010,  Weidenhamer  and  Callaway  2010),  thereby  highlighting  the  magnitude  of  the
problem and calling for urgent actions to control and manage the invaded as well as the
vulnerable ecosystems.

In  this  context,  the  development  of  thorough  management  actions  requires  accurate
assessments  of  IAS  occurrences  at  fine  spatial  resolutions  and  across  large  spatial
extents. Field surveys are crucial for this task but due to the exhaustive fieldwork required
to  monitor  changes  over  time  and  across  large  spatial  extents,  this  type  of  survey  is
sometimes not  feasible.  Besides,  field surveys might  be subject  to biases in detection,
especially  in cases of  early colonization and in relation to the level  of  expertise of  the
observer (Fitzpatrick et al. 2009).
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Noteworthy,  field observations of  IAS’  distribution are often collected as presence-only,
despite the fact that accurate data on species absences is also crucial for monitoring and
for the development of models capturing the species distributions, also known as species
distribution models (SDMs) (Lobo et al. 2010). This fact is of paramount importance in the
case of IAS which usually are not in equilibrium with their environment within the invaded
range, that is, species would have already occupied all suitable habitats and is absent from
all unsuitable habitats: a key assumption of traditional SDMs. In the case of IAS, a careful
distinction between observed absences due to unsuitable environmental conditions, also
known as environmental absences, and those due to dispersal limitations to locations that
are environmentally suitable, known as contingent or dispersal-limited absences (Hattab et
al. 2017), is a key prerequisite to the SDM development. In this context, the availability of
spatially explicit data of high resolution and over large extents, in combination with ground
surveys, could provide the ingredients for the development of a framework for detection,
monitoring  and  assessment  of  IAPs  that  generate  products  that  are  relevant  for
management at multiple spatial and temporal scales (He et al. 2011, Hattab et al. 2017)

Remote sensing provides continuous spatially explicit data at several temporal and spatial
resolutions ranging from hundreds of meters at high temporal resolution to few centimeters
at lower temporal resolutions and across a steadily increasing spatiotemporal  extent.  A
growing  number  of  studies  have  demonstrated  the  applicability  of  remote  sensing
technology, and specifically of hyperspectral and Light Detection And Ranging (cf. LiDAR)
sensors, to detect and monitor IAPs (Huang et al. 2013). This flourishing literature ranges
from  the  differentiation  of  native  vs.  alien  species  (Somers  and  Asner  2013)  to  the
detection of single species including trees, sub canopy trees (Barbosa et al. 2016) and
even tiny moss species (Skowronek et al. 2016). The development of new platforms and
instruments  are  opening  new  research  avenues  that  integrate  remote  sensing  as  a
standard tool to monitor IAPs. And along with these new technologies comes the need for
transparent and affordable software tools as well as trained experts to process these large
datasets promptly and accurately.

Hyperspectral  images  are  often  described  as  a  data  cube  with  a  spatial  X-  and  Y-
dimension, and a third dimension containing information on the earth surface reflectance
across the electromagnetic spectrum. This information is provided for hundreds of spectral
bands in the wavelength range spanning from the visible to the mid-infrared part of the
spectrum.  Such  data  set  can  be  linked  to  biochemical  and  biophysical  vegetation
properties via empirical models which can be used to:

1. estimate key traits such as specific leaf area or leaf chlorophyll content (Ghiyamat
and Shafri 2010, Homolová et al. 2013);

2. assess plant diversity (Nagendra 2001);
3. classify plant or plant functional types, e.g. to separate native and alien species

(Asner et al. 2008); or
4. identify single species (Bradley 2013, Skowronek et al. 2016).
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LiDAR sensors use the light emitted from a laser pulse to measure the travel time of the
pulse from the source to the target and back. Using this procedure, the instrument provides
information on the surface and the vegetation 3D structure at high spatial resolution (Lim et
al. 2003). The data collected is distributed in point clouds with varying density depending
on the sensor specifications, flight height and velocity. The higher the point density the
higher the accuracy in the products derived from it. For example, digital elevation models
(DEMs) can be derived from low density point clouds (1 point per m ) while vegetation
studies require higher point density (from 8 point per m  onwards) (Wu et al. 2016). The
LiDAR-derived 3D structure of the terrain and the vegetation can be used as surrogates for
physiographic and biophysical properties (e.g. Lenoir et al. 2016), respectively, both being
potential  determinants  of  the  distribution  and  spread  of  IAPs.  For  this  reason,  LiDAR
images are very complementary to hyperspectral images when the aim is to understand
the determinants of IAPs’ distribution within the invaded range and subsequently model the
potential spread.

The  aim of  this  paper  is  to  provide  an  open  source  toolbox  to  face  the  challenge  of
detecting, monitoring and assessing the impact of IAPs on ecosystem functioning through
remote sensing, this work is based on the results and knowledge gained from an inter-
disciplinary BiodivERsA project (DIARS, http://diars.vgt.vito.be/).

The  toolbox  (http://diarsproject.github.io/DIARS/HomeDIARS.html)  features  clear
guidelines to process and analyze ground and remote sensing data to map, model and
assess the impact on ecosystem functioning of IAPs. A dataset specially designed to allow
computation even at small processing power as well as the “iSDM” R package (https://
cran.r-project.org/web/packages/iSDM/) to help inform the sampling of  IASs as well  the
mapping and modelling of IASs are also provided together with the toolbox.

Overview of the toolbox

The toolbox is designed as an easy-to-use, free and open-source solution for the detection,
monitoring and impact assessment of IAPs through remote sensing (Fig. 1). It consists of a
series of tutorials that include exemplary datasets of ground surveys, LiDAR point cloud
data, hyperspectral images and several R functions to:

• implement an optimal sampling design for ground surveys;
• map and model the realized and potential distributions of IAPs within the invaded

range, respectively; and
• assess the impact of IAPs on some ecosystem functions.

The toolbox tutorials are organized into two main sections:

• data preparation and
• applications (Fig. 1).

2
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The first section contains three tutorials on hyperspectral data, LiDAR data processing and
the  implementation  of  the  method and R functions  to  generate  an  optimized systemic
sampling design. The second section presents the three main applications of the toolbox:
mapping, modeling and impact assessment.

Data processing

There are three main types of data used in the toolbox: hyperspectral data; LiDAR data;
and field data.  Each type of data requires a specific processing that  is  explained in a
dedicated tutorial. The first tutorial, hyperspectral data processing guidelines, includes a
procedure to filter specific bands with values that might add noise to the analysis (e.g.
water vapor) and the steps recommended to have the data ready to use in R (R Core Team
2015).

The LiDAR guidelines include instructions on how to import the data (in LAS format) into R
and extract a high-resolution digital terrain model (DTM), as well as various canopy height
metrics and statistics. This part of the tutorial is based on an interface between GRASS
GIS  7.0  (GRASS Development  Team 2015)  and  the  R  environment,  which  offers  the
possibility to ecologists (who are more familiar with R) to use GRASS GIS commands from
the R command line via rgrass7 package (Bivand 2016).

Finally, in the third part of this section, highlights an approach that optimizes the sampling
of observed presence-absence data of IAS in the field and the handling of absence data for
subsequent analyses. The tools are presented as part of the “iSDM” R package (Hattab et
al. 2017), that provides functions to facilitate the setup of ground surveys that optimally
capture the environmental variation available within the studied area through a systematic

 
Figure 1.  

DIARS toolbox workflow. The green gears correspond to the sections of the toolbox and are
accompanied by boxes stating its main goal. The gray gears describe the advantages of the
DIARS toolbox.
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sampling  design  within  the  environmental  space  and,  to  assess  the  probability  that
observed field absences are contingent and thus should only be used for mapping the
realized distribution but  not  for  modeling the potential  distribution (Fig.  2,  Hattab et  al.
2017).

Applications

The applications part of the toolbox is based on three main pillars: mapping; distribution
modeling; and impact assessment. Early detection and monitoring of IAPs is key to track
and minimize its negative impacts on natural  ecosystems, while ground surveys are of
crucial  importance  to  ensure  early  detection  and monitoring  of  IAS.  Yet,  the  logistical
barriers  to  reach  remote  areas  and  organize  periodic  surveys  limit  its  success.  The
potential  of  hyperspectral images  has  already  proven  useful  to  face  the  challenge  of
detecting even relatively low cover fractions of a small and inconspicuous moss species
(Skowronek et al. 2016). This particularly challenging example is presented in the tutorial
(Fig. 3).

Projecting species’ future distributions has become an important tool to manage alien plant
invasions (Rocchini et al. 2017). These models (cf. SDMs) produce maps depicting the
areas of potential invasion risk, the areas that require close surveillance and those that
require mitigation actions (Guisan et al. 2013). In this section, guidelines to run SDMs are
provided  as  well  as  a  set  of  observations  to  run  SDMs for  IAS  in  a  “best  practices”
framework. This section also combines the outcomes from the LiDAR data processing with
those derived from the systematic sampling design proposed in the toolbox.

 
Figure 2.  

Overlook of the “iSDM” R package functions presented in the toolbox.
 

6 Garzon-Lopez CX et al

https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4276812
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4276812
https://arpha.pensoft.net/display_zoomed_figure.php?fig_id=4276812
https://doi.org/10.3897/rio.4.e25301.figure2
https://doi.org/10.3897/rio.4.e25301.figure2
https://doi.org/10.3897/rio.4.e25301.figure2


The last part in the applications’ section deals with the assessment of the impact of plant
invasions  on  the  ecosystem functioning.  The  approach  focuses  on  the  impact  of  IAP
species establishment on the nutrient status of the native plant communities (Aerts et al.
2017). In a first step, a combination of LiDAR and hyperspectral data is used to predict
measurements of chemical leaf traits into space. In a second step, information from the
resulting  prediction  maps  is  used  to  compare  canopy  nutrient  concentrations  between
invaded and non-invaded sites.

Data resources

The demonstration dataset was generated to provide an easy-to-download and easy-to-use
real-world data set including ground surveys, hyperspectral and LiDAR data of actual alien
plant invasion cases. One initial challenge when using LiDAR and hyperspectral data is the
large size of the files that often require high computer power. For example, the original
hyperspectral data file of one of our study site was 27 Gb and the raw point cloud LiDAR
file was 413 Gb, which are typical dataset sizes for airborne imagery. To overcome this
high demand of computational power, we developed a checkerboard approach (Fig. 4) that
reconstructs a hyperspectral/LiDAR image using only information from areas relevant for
model calibration and validation, together with information from a set of background areas.
This  way  we  derived  snippets  from  the  original  images  that  were  in  a  second  step
rearranged to an image mosaic (Fig. 5). The resulting reconstructed image is similar to a
checkerboard where each cell consists of the extracted hyperspectral/LiDAR values for a
specific plot. After the reconstruction, plot field data were relocated to match the spatial
locations in the reconstructed image and provide a complete but much lighter dataset with
real hyperspectral and LiDAR data, and ground data.

 
Figure 3.  

Example of the workflow used for the mapping of alien plants. The same approach was used
for all the tutorials.
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The dataset consists of two such reconstructed hyperspectral images with 248 spectral
bands and spatial resolutions of 1.8 m x 1.8 m (Fig. 5A) and 3 m x 3 m (Fig. 5B) for the
island of Sylt (Germany) and for the forest of Compiègne (France), respectively. A set of
LiDAR-derived rasters with the same spatial resolutions and, a corresponding table of plot-
based  field.  The  field  data  include  repositioned  geographical  coordinates  (in  the
reconstructed image space), grid categories (i.e. calibration, validation, background) and
the percentage cover of the invasive alien moss species Campylopus introflexus (Hedw.)
Brid., 1819 (Sylt island) and the invasive alien tree species Prunus serotina Ehrh., 1788
(forest of Compiègne). Additional field data are provided for the forest of Compiègne on the
community weighted mean of leaf phosphorus and nitrogen concentration for plots with
varying native and alien invasive species abundance. The original remote sensing data
were acquired in two flights and field campaigns within the DIARS project. For Sylt island,
an APEX (Airborne Prism Experiment) sensor covering a spectral range between 412 and
2432 nm was used by The Flemish Institute for Technological Research (VITO) to acquire

 

 

Figure 4.  

Image reconstruction process work flow. This process is done using GRASS GIS.
 

Figure 5.  

Some examples of reconstructed images: A. Sylt island reconstructed image and plot locations
(wavelengths: 170R, 65G, 17B). B. Compiègne Forest reconstructed image and plot locations
(wavelengths: 207R, 65G, 10B).
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the  hyperspectral  images during  July  2014.  VITO also  preprocessed the hyperspectral
images with  geometric  calibration,  correction of  spectral  smile  effects  and atmospheric
correction (Schaepman et al. 2015). Aerodata France acquired and preprocessed airborne
discrete return LiDAR data across the island of Sylt with an average point density of 23
points/m  across the island of Sylt,  also in July 2014. For the forest of Compiègne, an
APEX sensor covering a spectral range between 380 nm and 2500 nm was used by VITO
to  acquire  the  hyperspectral  images  during  July  2014.  Aerodata  France  acquired  and
preprocessed airborne discrete return LiDAR data across the forest of Compiègne with an
average point density of 14 points/m² in February 2014.

The toolbox is transparent and open, allowing for changes and customizations to fit other
datasets  and  sources,  and  also  presents  the  method  to  create  training  data,  via  the
“virtualspecies” R package (Leroy et al. 2015), for SDMs (Hattab et al. 2017) and other
applications.

Accesing the toolbox

The toolbox can be accessed at http://diarsproject.github.io/DIARS/HomeDIARS.html. The
dataset can be downloaded from the site and all the tutorials have been developed using
the following free and open source software (FOSS): R and GRASS GIS (Neteler et al.
2012).
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