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Abstract

A constant problem developmental neuroimagers face is in-scanner head motion. Children
move more than adults and this has led to concerns that developmental changes in resting-
state connectivity measures may be artefactual. Furthermore, children are challenging to
recruit  into studies and therefore researchers have tended to take a permissive stance
when setting exclusion criteria on head motion. The literature is not clear regarding our
central  question: How much motion is too much? Here, we systematically examine the
effects of multiple motion exclusion criteria at different sample sizes and age ranges in a
large  openly  available  developmental  cohort  (ABIDE;  http://preprocessed-connectomes-
project.org/abide).  We  checked  1)  the  reliability  of  resting-state  functional  magnetic
resonance imaging (rs-fMRI) pairwise connectivity measures across the brain and 2) the
accuracy  with  which  we can separate  participants  with  autism spectrum disorder  from
typically developing controls based on their rs-fMRI scans using machine learning. We find
that reliability on average is primarily sensitive to the number of participants considered,
but that increasingly permissive motion thresholds lower case-control prediction accuracy
for all sample sizes.
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Background

A constant problem developmental imagers face is in-scanner head motion (Poldrack et al.
2002, Raschle et al. 2012). Children move more than adults and this has led to concerns
that developmental changes in resting-state connectivity measures may be artefactual (Van
Dijk et al. 2011, Satterthwaite et al. 2012). Furthermore, typically-developing children and
children  with  developmental  disorders  are  challenging  to  recruit  into  studies  and
researchers may engage in extensive mock scanner motion training with participants and/
or may take permissive stance when setting exclusion criteria on head motion (de Bie et al.
2010, Yerys et al.  2009). Yet,  no one has systematically examined what motion cutoffs
should be used to make reliable inferences in developmental data and how this might vary
by both sample size and age range.

Here, we systematically examine the effects of multiple motion exclusion criteria at different
sample sizes and age ranges in a large openly available developmental cohort (ABIDE; Di
Martino et  al.  2013,  Cameron et  al.  2013; http://preprocessed-connectomes-project.org/
abide) on both reliability of resting state functional magnetic resonance imaging (rs-fMRI)
pairwise connectivity and Autism/healthy control prediction accuracy.

Methods

In a cohort of 743 children (aged 6 to 18 years, 620 male), we varied motion cutoffs and
sample size to explore how these variables impacted both split-half reliability and prediction
accuracy of autism diagnosis using machine-learning. Specifically, we adjusted the sample
size (from 10 to 100 participants) and the permitted number of volumes that exceeded a
displacement  from the  previous  volume by  0.2  mm (from 0  to  100%;  details  at  http://
preprocessed-connectomes-project.org/abide/quality_assessment.html). The input data for
all analyses were individual pairwise correlation matrices using the 116 regions of interest
(ROIs) defined in the Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.
2002). For both analyses described below we selected two matched groups according to
our  sample  size  and  motion  criteria,  and  ensured  they  were  balanced  for  age,  sex,
diagnosis, and scanning site. Data and all code to reproduce the analyses can be found at
GitHub (Flournoy and Leonard 2017).

For the split-half reliability analyses, we averaged the individual correlation matrices to
give the average connection between each ROI-ROI pair in each group. We computed R-
squared values for the fit between all the average pairwise correlations assuming the two
groups were equal (Fig. 1) r each sample size and motion cutoff, we ran 100 permutations
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to  identify  a  median  R-squared value  and  therefore  were  able  to  create  a  value  of
“reliability” between two samples by motion threshold and sample size.

Another measure of how motion thresholds change the replicability of an analysis is out-of-
sample  predictive  accuracy.  We  used  the  participants'  resting  state  functional
connectivity matrices as features to predict diagnostic category (Autism spectrum disorder
vs typically developing controls). We designated one half of the data to be a training set
and reserved the other  for  testing our  model.  The training generated a support  vector
machine  (SVM)  classifier  with  an  L1  penalty  tuned  using  10-fold  cross-validation
(Pedregosa et al. 2011) classifier was then used to predict diagnosis labels in the test set,
with classification accuracy as our outcome of interest. Both the test-training split, as well
as the 10-fold splits within the training data, were stratified so that the proportion of cases
and controls were roughly equivalent in each split. For each sample size and motion cut off
we ran 500 permutations. We compared the estimated prediction accuracy to a baseline
rate  that  would  be  achieved  by  predicting  that  all  diagnosis  labels  are  the  same  for
whichever diagnostic category is the most prevalent -- that is, if in a sample of 90 controls
and 10 cases,  one could achieve 90% accuracy by predicting that  every participant  is
labeled a control.

 
Figure 1. 

In order to investigate the effects of age range, motion exclusion threshold and sample size on
functional connectiivity reliability we split the data into two matched samples. For the reliability
analysis we averaged all participants in each sample and then calculated how well aligned the
two groups were in  terms of  each pairwise regional  connectivity  measure.  For  the out-of-
sample prediction analysis we used one half of the data to train a model and then tested it on
the other half.
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Results

The split-half reliability analysis showed that reliability is primarily sensitive to the number
of  participants  considered,  with  more  participants  leading  to  higher  reliability  (Fig.  2).
Motion cutoffs didn’t seem to have a strong effect on reliability. Although this is comforting,
it is important to note that while some studies still average across subjects to look at group
differences, many are moving towards predicting individual differences. Our results do not
speak to the sensitivity of individual difference analyses to motion.

The  results  of  the  out-of-sample  predictive  accuracy analyses  show  that  prediction
accuracy  is  not  only  dependent  on  sample  size  but  also  on  motion  cutoffs.  The  best
prediction was found in larger sample sizes with lower motion thresholds (Fig. 3). In sample
sizes of 60 or more, median prediction accuracy is steadily above the baseline of a naive
classifier that assumes that all participants share the modal diagnosis (in this case, non-
ASD). However, out-of-sample prediction accuracy varies across the different permutations
of the data within each sample-size and motion threshold iteration, and a large proportion
of classifiers perform worse than baseline. We only tested one machine learning strategy
and it is likely that the exact model will also affect the prescribed “best” motion cutoff and
sample size.

 
Figure 2. 

Split-half  reliability  results  showing how sample size (N)  has a large effect  on R squared
(median  R  squared  from  100  permutations)  while  motion  threshold  does  not.  Error  bars
represent average 95% confidence intervals across 100 permutations. Code and output can
be found on GitHub (Flournoy and Leonard 2017).
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As  expected,  larger  sample  sizes  improve  both  of  our  reliability  measures  (R  and
prediction accuracy).  We found that  prediction accuracy decreased when the exclusion
criteria for motion was made more lenient.

Conclusions and future directions

While this project is far from complete, we have shown that motion cutoffs, and sample
sizes, and age ranges do affect reliability in developmental data. In future work, we would
also like to explore how both motion thresholds and sample sizes might affect reliability
differently by age range. Our end goal is to provide tool for authors to check their own
datasets  against  our  findings to  ensure they make informed decisions when designing
future developmental neuroimaging studies.

In a larger sense though, we have shown that bringing people together who work in a
similar  field  (cognitive  neuroscience)  but  from  diverse  backgrounds  (developmental
psychology, psychiatry, computational modeling, developmental cognitive neuroscience) for
a one week hackathon can foster novel solutions to old problems. This cross-pollination of
ideas brought a much needed fresh, rigorous methodological approach to developmental
imaging  and  the  week  of  fast  learning  inspired  and  prepared  the  next  generation  of
cognitive neuroscientists to create thoughtful and reproducible work in the future.
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Figure 3. 

Out of sample prediction accuracy of autism diagnosis using resting state data as a function of
sample size and motion-based exclusion criteria (percentage of fMRI, whole-brain volumes
exceeding threshold). Red line is a naive classifier that assumes that all participants share the
modal  diagnosis  (in  this  case,  non-ASD).  The black line spans the 5th to  95th percentile
accuracy across iterations using a linear SVM, with the black points at the median value. Code
and output can be found on GitHub (Flournoy and Leonard 2017).
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