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Abstract

The  key  hallmark  of  a  digitally  minded  organisation  today  is  seen  in  their  rapid

advancement, globalisation, innovation and resilience to change. Companies that wish to

thrive must be prepared to adapt to the new digital reality. Being digitally minded does not

mean implementing new technology,  investing in  tools  and upgrading current  systems.

These stages are critical, but they are not the entire picture. If a company wants to remain

competitive, it  must not just be able to adapt to changes, but also anticipate and drive

innovation. Companies must plan ahead and be proactive architects of their future in order

to achieve this vision. This is where a digital transformation strategy is crucial. A digital

transformation strategy assists organisational leadership in addressing challenges about

their business, such as the present level of digitisation and a digital  maturity roadmap.

Although diverse data capturing technologies and data-generating assets exist, material/

chemical science domains, such as R&D and Manufacturing groups, struggle to harness

the full power of their data. A typical industry will have significant data sources generating

large amounts of data stored in siloed databases with minimal to non-existent cross-talk.

This in part creates scenarios for researchers to be able to perform a deep dive in one set

of  data,  but  unable  to  co-populate  and  harness  the  interdependences  or  relationships

amongst  the different  datasets.  This paper seeks to define,  distinguish,  aggregate and

propose an integrative approach to utilising the various types of disparate data sources

commonly encountered by researchers in the field of their material science research. The

main focus here is defining strategies to harness insights across integrative data to aid in
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efficient research in R&D organisations as these industries seek to embrace the power of

digital  transformation.  Although the principles described here relate to industries in  the

applied science domain, the general strategies proposed can be applied to other industries

on a case-by-case basis.
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digital  transformation,  digitisation strategy,  applied science,  data management,  systems

integration, KNIME

Introduction

Digital transformation is occurring across organisations, from the pharmaceutical industry

to  the  service  industry,  bringing  such  benefits  as  better  decision-making  and  faster

processing as information is  shared instantly.  A decade ago,  prospects  for  data-driven

progress were hardly imaginable, but now they are becoming more and more possible

because  to  falling  computation  costs  and  more  accessibility  to  cloud-based analytics.

Chemical plants create enormous volumes of data, much of which has the potential to be

used to improve efficiency and raise yields, similar to the majority of large-scale industrial

facilities. For instance, according to recent research, chemical producers might boost their

return  on  investment  by  as  much  as  5% by  merely  digitising  their  product  processes

(Kumar 2019). Moreover, digital monitoring of an organisation's energy use may assist in

lowering  dependency  on  low-efficiency  fuels  and  feedstocks,  significantly  enhancing

consumption-to-yield ratios  across  numerous  production  pipelines.  The  materials  and

chemical  research  and  development  (R&D)  organisations  can  also  benefit  from

digitalisation  and  the  use  of  data-driven  tools,  such  as  machine-learning  algorithms.

However, to harness these benefits, material science industries have to build and maintain

comprehensive data aggregates from the disparate sources of data generated during the

research phase. As has been widely reported, the challenge of disparate or siloed data

sources inhibits the collective use of the full spectrum of synthesis to performance data of

materials  developed (Morgan 2020,  Vasudevan et  al.  2021,  Gao et  al.  2022).  The US

government’s  Materials  Genome Initiative (MGI)  highlights the need for  comprehensive

materials data infrastructure to accelerate innovation (Hernandez 2018). An initial National

Institute of Standards and Technology (NIST) MGI report attributes significant cost saving

worth billions of dollars in economic value in the United States alone to next-generation

materials innovation infrastructure (White 2012, Hernandez 2018, de Pablo et al. 2019. To

realise  this  benefit  requires  a  paradigm  shift  from  the  traditional  approach  of  data

management and use in the industry. Known legacy data management approaches have

led to situations in the industry where:

1. Decisions driven by experimental  data are limited,  based on the time and cost

associated with generating said data;

2. Existing experimental data are sparse and incomplete;

3. Data analysis and statistical methods are rarely used; and
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4. Access  to  historical  data  is  poor,  causing  repetition  of  experiments  and limited

learning from past work.

To curb the above challenges requires an integrative data management approach which

allows  researchers  to  accurately  analyse  and  understand  their  results  as  they  try  to

optimise the properties of a new material. If simulation techniques or machine-learning are

being  used  to  reduce  the  number  of  experiments  needed,  then  integrative  data

management becomes even more important, as algorithms need structured information to

work.

According to the MGI programme, developing new materials for next generation application

use  can  be  a  much  arduous,  time-consuming  and  very  expensive  process.  A  typical

development cycle spans between 5 to 10 years (de Pablo et al. 2019, Olson 2000). The

development process involves design of experiment, formulating, processing, testing and

production. Each of these stages inherently produces troughs of data associated with the

selected experimental design and they typically occur within different research groups or

departments.  Hence,  each  experiment  tends  to  produce  data  that  resides  in  different

systems across the organisation. As an example, during material synthesis, the processing

parameters, such as pressure, temperature and rate from the chemical reactors, are stored

in the computer (PC) peripherals attached to the individual equipment in use or a network

device that aggregates all the parameters for the reactor. This provides a rich source of

data when troubleshooting reactor issues; however,  it  may not necessarily provide any

context  by itself  to  a researcher  who is  evaluating the performance of  the final  tested

product. In the same way, data generated from the analytical characterisation of the new

material developed tends to be siloed within the analytical department’s databases. These

example  data  sources  tend  to  be  segregated  to  their  respective  department,  offering

minimal  integration  for  drawing  data  insights.  A  frequent  challenge  highlighted  around

these  types  of  data  is  their  different  native  formats  not  being  compatible  across  the

development spectrum. While that is accurate, recent advances in material informatics do

highlight  new technologies that  can transform different  data types into  unique formats,

consequently ingestible for machine-learning (Berthold et al. 2009, Warr 2012, Dwivedi et

al. 2016).

A fully-integrated stream of R&D data sources enables researchers to ask questions that

can accelerate their product development. A typical objective of a research group might be

exploration of virtual product development geared towards faster material development and

better  understanding  of  certain  composition  and  performance  yields.  Another  area  of

interest resides in the in-silico synthesis of materials or chemicals, whereby in new product

or  process  development,  researchers  are  able  to  determine  upfront  which  process,

composition or catalyst are needed to produce products with desired properties and yield.

In most cases, there are data available which do not cover the entire research life cycle;

process/chemical  structure/property/performance.  Hence,  it  is  essential  to  include

advanced  calculation  constraints  when  attempting  to  optimise  inputs  and  outputs  in  a

predictive  synthesis  model.  An  example  of  such  a  case  would  be  studying  structure

property  relationships  in-silico  where  structure  is  defined  as  an  input  as  opposed  to

process data which may not be complete or accessible easily. Full utilisation of advanced
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analytics and modelling tools requires transparent data access for researchers working in

this industry.

Impact of COVID-19 pandemic on industries

COVID-19  changed  R&D work  across  many  scientific  areas.  Labs  were  compelled  to

handle  operations  remotely  and  scientists  relied  on  digital  technologies  to  keep  vital

research moving forward. Some jobs were amenable to conversion to the remote world.

Instead of meeting in rooms, researchers collaborated through Zoom®. They planned work

schedules and carried out  data analysis from their  homes. Tasks that  needed physical

presence in the facilities to prepare and load samples, as well as study analogue data in

real time, were much more complex. Researchers had to struggle with ensuring the right

process parameters and reagents were fed into their synthesis tools remotely. One of the

greatest challenge faced by scientists in the chemical industry space was real-time access

to data generated in their labs remotely during the pandemic era. This issue was magnified

during the pandemic era, though it has always been a challenge for non-digitalised R&D

organisations. The effects of the pandemic’s work-from-home rules in 2020 and 2021 have

provided many companies the chance to re-evaluate the amount of technological debt they

are carrying with legacy informatics systems and how outdated methodologies do not help

the digitisation of their business. This has enabled organisational leaders (including those

in the chemical sciences domain) to speed up comprehensive modernisation plans for their

research laboratories and process operations.

Process flow chart of a typical R&D operation

The commercialisation of new product and chemistries is a very complex and resource-

intensive process. The time taken from conceptualisation of research ideas to final product

delivery to customers is an expensive journey filled with multiple iterations of development

failures and small successes. Take for an example the process required to come up with a

new material for the industry as depicted in the chart in Fig. 1. The process begins with an

ideation step on what researchers would like to achieve with a set formulation. This step

usually  is  derived with the goal  of  either  making a new material  tailored for  a specific

segment of the market and customer or for a broader commodity market. In either case,

the next logical step involves several iterations in the development cycle to deliver a robust

and stable formulation that is further enhanced with inputs from select commercial interest

groups. The process of enhancing the new product is carried out through sampling and

testing for specific properties' requirements to meet a market need. This particular stage

can be quite exhaustive with repeat processing, sampling and testing batches until  the

desired properties are met.  Having completed this cycle, the new product is scaled up

commercially through manufacturing plants and after which commercial revenue streams

starts flowing into the organisation.

As discussed in the previous section, the process to fully develop and commercialisea new

product on the market requires extensive time commitment and resources. From Fig. 1, it
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is  clear  that  the  development  of  any  new  material  requires  collaborative  efforts  from

different part of the business right from the ideation stage. The most time-consuming part

of the process lies within the design and development cycle. It is at this stage that most of

the experimental data are generated by different labs and testing groups. Organisations

with complex stand-alone systems or labs suffer greatly in fully utilising data generated

from research work for which they have spent a lot of money. Unfortunately, this scenario is

all too common in the chemical/material science industry where true digitalisation of assets

are still at its infancy when compared to Pharmaceuticals and FinTech organisations.

In an effort to truly harness the power of the huge trough of data generated in today’s

research labs, organisations require a digital strategy covering data management and lab

connectivity  protocols.  To  be  clear,  implementing  a  digital  strategy  requires  more  than

merely upgrading the technology in laboratories;  rather,  the entire corporation must  be

considered. Such an initiative re-imagines how people work and engage with one another,

focusing  as  much—if  not  more—on people  than  technology.  The  key  to  a  successful

transformation  is  a  deliberate  focus  on  talent  and  skill,  which  enables  employees  to

integrate  their  scientific  duties  with  new technology,  which  in  turn,  connects  the  many

laboratories  to  one  another  across  the  company.  However,  it  is  crucial  to  pay  great

attention  to  each  individual  lab  type  and  the  difficulties  particular  to  the  people  and

procedures in each environment. Despite the fact that each type of lab is distinct and has

its own special skills, procedures and technology, they are all  interrelated and mutually

beneficial.  As a result,  all  laboratories should be evaluated and considered as equally

capable of creating increased value.

Figure 1.  

Material commercialisation is difficult, time-consuming and expensive.
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Integrating technologies

Gaining  access  to  all  of  your  data  sources  is  the  first  step  in  doing  end-to-end  data

science.  The  process  of  gathering  and  shaping  data  from  any  source  within  an

organisation  is  the  core  definition  of  integration.  There  are  a  number  of  unique

technologies in the market now that address the different types and levels of integration

(Hendler 2014; Miller 2018).

Data integrity

The data entry and management of an organisation’s research is the dawn of their digital

transformation journey and this goes on to show how far chemical and material science

domains must go to attain AI-ready datasets. A fundamental step for any industry on this

journey is to ensure the availability of its data in suitable formats logged electronically into

a database system. However,  as previously shown, the chemical  and material  science

R&D  is  behind  on  data  connectivity;  even  now  the  broad  adoption  of  electronic  lab

notebooks is not widely applicable. The daunting issue of overcoming data silos have not

gained much traction either. The good news is that there have been a number of solutions

come on the market (Hendler 2014); however, until  the chronic issues are tackled, the

transformation can only go so far.

Structured vs. unstructured data

Over  the  last  few  years,  data  have  become  what  is  knowns  as  the  next  “oil”  for

organisations  (Hirsch  2013)  and  internal  data  are  an  important  component  of  every

business' intellectual property (IP). However, just like oil, data from these organisations do

not  come pre-structured and ready for  artificial  intelligence (AI-ready).  To fully  harness

insights from messy data will require significant iterations of data cleansing and structuring.

Each  stage  of  this  exercise  can  yield  further  insights  into  the  data  and  that  presents

opportunities to exploit early successes for decision-makers. It is important to understand

that different formats of data are classified differently according to their structure stored.

For example, the majority of experimental data/notes acquired in the lab are unstructured

in nature. However, most time-series-based process data tend to be more structured.

Machine-learning  algorithms  can  quickly  comprehend  structured  data,  which  is  often

classified as quantitative data. Structured query language (SQL), is one of the most widely-

used  computer  languages  for  managing  structured  data  (Lu  et  al.  1993;  Nagy  2017).

Organisations can easily explore and manipulate structured data by utilising a relational

(SQL) database.

However,  unstructured  data,  often  known  as  qualitative  data,  cannot  be  handled  or

evaluated  using  standard  data  tools  and  procedures.  Unstructured  data  are  best

maintained in  non-relational  (NoSQL) databases since it  lacks a specified data model.

Another option for managing unstructured data is to store it in a raw form in data lakes.
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Most  recently,  companies  have  hailed  the  advantages  of  AI  in  chemical  and  material

science; with key focus on the speed of discovery, as well as the much simplified material

compatibility assessment. The hidden truth most people do not hear: with poorly managed,

unstructured data, none of these possibilities is conceivable. If  organisations go into AI

assuming that decades of stitched-together excel files would be the magic wand, then,

unfortunately they are on a far longer (and more expensive) road than they ought to be on.

It is not far-fetched for industries to start delving into their dataset only to find out significant

portions of the data captured are unstructured and not as complete as they initially thought

it would be. Not surprising in 2019, researchers at Deloitte (Smith et al. 2019) published an

article referencing only 18% of organisations reported being able to take advantage of

unstructured data. This leaves a staggering 82% of organisations underutilising their most

valuable resource – data.  To assist  companies in overcoming the common obstacle of

scarce, highly dimensional, biased and noisy data, it is imperative that the right connectivity

is  drawn  to  leverage  the  different  types  of  data  available.  This  would  require  an

understanding of the types of data being generated and stored during the research phase.

In  a  typical  material  development  workflow,  researchers  begin  with  formulation  and

synthesis,  extrusion/molding,  analytical  characterisation  and,  finally,  quality  assurance

release  testing.  This  sequence  highlights  the  different  departments  and  data  sources

impacted in a development cycle. Each of these departments produce varying data types

which are then housed in their specific domains and are usually read by specific software

modules. As an example, the synthesis group will store data around pressure, temperature,

viscosity and time during the reaction process. The formats of these data are naturally

different when compared to results from an analytical test using gas chromatography or

infrared spectroscopy. Coupled to these differences are also the fact that data are, most of

the time, stored separately in the different departments (silo system) and there are limited

to no cross-talk amongst these systems. The different formats and types of data generated

through the development process in itself poses a major hindrance to researchers as they

attempt to draw insights from historical data. A good practice for adoption by chemical and

material  science  organisations  is  the  power  of  leveraging  systems  integration.  In  the

subsequent section, we will highlight the “as-is” situation in a typical R&D lab and propose

unique ways of smartly integrating the different data siloes in research environments. This

is the foundation for building an end-to-end data pipeline for all the disparate data sources

needed to harness valuable insights for an organisation.

Integrating multi-data sources

The proper integration of data and technologies is critical for all downstream operations,

such  as  information  exploration  and  knowledge  management  (Adamides  2020).

Organisations with effective data integration will be able to make better resource allocation

decisions during the R&D process. Moreover, because there are no clear standards for

integrating research data saved in electronic lab notebooks (ELN) or laboratory information

management system (LIMS), integration can be done, based on business needs.
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As  an  example,  researchers  working  on  developing  new  or  improved  materials  or

chemicals are typically bombarded with a host of datasets coming from all facets of the

organisation about their particular project (Fig. 2). As described earlier, most of these data

reside in their siloed system, with no clear and connected way for a researcher to combine

and draw insights from all these datasets.

As a case study, let  us consider an organisational research need of exploring material

property predictions, based on formulation, process and analytical  characterisation of a

polymer material. As discussed previously, the different process outlined above generate

different  formats  of  data  and  tends  to  be  siloed  in  a  different  business  unit  in  an

organisation. Hence, it is important to understand what types of data formats are at play in

this scenario.

Figure 2.  

A view of disconnected data silos typically encountered in a non-digitalised R&D lab (See

Appendix for list of abbreviations).
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Synthesis data stream (formulation)

Formulations  are  chemical  and/or  material  compositions  that  are  homogenous.  To

manufacture polymer composites, formulations can be mixes of solids or solvents-based

components and can comprise of oligomers, fillers, pigments and other additive materials.

They can be basic unreactive chemical  blends,  reactive mixes where the sequence of

mixing matters or blends of blends where the ultimate molar composition is determined by

the original blends' composition. All of this means that there is a plethora of conceivable

components, each with its own set of limitations governing its kind, number, molar percent

and mixing order. Typically new formulations are usually created in response to a customer

request  that  includes several  component and process limits  as well  as property goals.

Winning or losing major contracts depends on swiftly recognising what you already have

and what can be quickly altered or expanded to meet new business prospects. Buying,

storing  and  processing  hundreds  of  different  components  is  expensive  and  there  are

apparent cost reductions to be obtained by rationalising the process. Ingredient costs vary

and  formulations  that  meet  goal  qualities  while  incorporating  lower-cost  constituents

increase profits.  As global  events  have an influence on supply  chains,  the capacity  to

swiftly  reformulate  utilising  materials  from  a  new  supplier  has  become  increasingly

important.  It  is  also  important  to  remain  adaptable  when new regulation  on  prohibited

chemicals takes effect. For data management and machine-learning, the formulation space

provides a number of unique issues. A typical material manufacturer will have hundreds, if

not thousands of different formulations for their products. Each formulation accounts for a

specific materials' property that is tied to a business need or sales order. Thus, it is crucial

for  manufacturers  to  maintain  the  specific  ingredients  and  quantifies  that  produce  the

unique property  of  the  material  specified  for  the  market  need.  These formulations  are

typically recorded as ingredients names and weights; hence, the data are mostly in a flat

file format in a database that can be extracted as csv or any tabular form. However, these

data by themselves are not enough to harness and improve rapid re-formulation and new

material development without the right process parameters captured. Organisations can

generate  huge  economic  value  by  leveraging  a  framework  that  properly  captures

complicated process flows, understands molecular structures and utilises the deep subject

knowledge of corporate specialists.

Process data stream

Imagine watching a recorded cooking show on TV, but for some reason, the network cuts

out  after  the chef  shows the ingredients and amounts needed to make the meal.  The

network returns after  the chef  has completed the meal  and it  is  served on the plates,

essentially cutting out the entire cooking steps. The question then is, can the viewer make

the exact same food as shown by the chef with the given ingredients without knowing the

steps? The obvious answer is, no. Similarly, as discussed above, formulation of materials

are key to organisational success on delivering their products; however, the process to

convert the ingredients to the product is as important as the formulation itself. For each

material  or  chemical  made  by  companies,  there  are  additional  tonnes  of  (meta-)data

optimised and collected for the process. These process data points are dependent on the
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synthesis  approach  or  equipment  used  in  making  the  materials.  During  synthesis  of

compounds or materials, data such as temperature, feed rate, pressure, flow rate, screw

dimensions  and  others  are  routinely  recorded  in  their  native  software  systems  of  the

instrument used. Historically in the manufacturing world, these data were used to monitor

and  optimise  production  process,  identify  any  potential  production  issues  or  system

troubleshooting. Engineers and scientists also used these process data to help make data-

driven decisions to improve the overall  material  synthesis and production performance.

However, with the advancement of machine-learning and visualisation tools, these forms of

data can be utilised to generate more than process upsets if the data are collected and

stored properly.

Process data in R&D organisations or manufacturing, in general, can be formatted in a

variety of ways, depending on the specific application and the type of data being collected.

Some common data formats include:

1. Numerical  values:  This  can  apply  to  metrics  like  flow  rate,  pressure  and

temperature, which are normally expressed as numbers.

2. Time-series data: This kind of information is gathered over time and may be used to

monitor changes in the process. It is often expressed as a succession of numerical

numbers, each with its own time-stamp.

3. Log files: This sort of data is produced by machinery and equipment and comprises

information on events that occur throughout the manufacturing process, such as

machine start/stop timings, alarms and other metrics.

4. Images/Videos:  In  certain  circumstances,  process  data  may  contain  photos  or

videos acquired by cameras or other imaging equipment, which may be used to

monitor and study the manufacturing process.

5. Additionally, some data are gathered via sensors, PLC, DCS, SCADA and other IoT

devices. These data may be transferred and stored in a variety of data formats,

including JSON, CSV and XML.

The data format used will be determined by the application's unique needs and the type of

data being gathered. It is also critical to ensure that the process data are kept in a manner

in which the appropriate stakeholders can readily evaluate and comprehend. Data files,

such as numerical, time-series and log files, can be saved as CSV or TXT-based flat files.

Analytical instrument data stream

Analytical characterisation of a material is the process of identifying the material's chemical

and physical characteristics using a variety of analytical techniques. These techniques can

range  from  Gas  Chromatography  (GC)  to  Differential  Scanning  Calorimetry  (DSC),

Transmission Electron Microscopy (TEM), InfraRed Spectroscopy (IR) and many others.

The main goal of using these techniques is to help provide understanding of a material's

structure  and  composition  at  the  microscopic  level  and  potentially  also  aid  in

troubleshooting  any  impurities  or  performance  defects  of  products.  Analytical

characterisation of materials may be applied in a variety of ways, including the creation of

new materials, maintaining the quality of already-existing materials and analysing failures
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in materials already in use. It is also important in the realm of materials science, where

researchers  utilise  it  to  explore  the  characteristics  and  behaviour  of  many  types  of

materials. Data from material characterisation come in various formats depending on the

type of analysis being carried out. Some examples of material properties measured during

product development include: composition of material, crystalline structure, morphology of

blends,  thermal  properties,  mechanical  properties,  rheological  properties  and a host  of

other  measurement  types.  The  data  from  analytical  techniques  are  usually  the  most

challenging form of  data  to  deal  with  from the onset.  Such a  department  would  have

access to multiple types of instrumentations with numerous softwares that run each item of

equipment.  It  is  important  to  highlight  here  that  the  different  data  generated from test

instruments  take  on  formats  driven  primarily  by  the  software  output  settings.  As  an

example, output files from a Gas Chromatography Mass Spectroscopy (GCMS) instrument

are mostly saved in either mzML (XML based format) or JCAMP-DX (a proprietary based

format). The output data for DSC instruments are also saved in either plain-text .DSC file

or CSV format. Hence, if a researcher were to ask the question “how do I compare the

mass spectroscopy m/z distribution pattern to the heat profile generated from the thermal

analysis of a tested material?”, one would manually have to perform data analysis on each

piece of dataset independent of the other dataset because the file formats are distinctly

different. Today, there is no software in the market that can automatically read and combine

all the different formats of data files from lab instruments together. However, in the example

above, if organisations have a truly digital integration pipeline, researchers would be able

to ingest all formats of data, albeit manually and read them in a unified output language

they can analyse. In this case, therefore, the researcher can parse and convert the GCMS

mzML  data  into  the  CSV  file  format  using,  for  example,  python  nodes  in  a  pre-built

integration pipeline. With both sets of data structured in the same format, the user can then

evaluate the results, based on a time-stamp as both sets of data can effectively be treated

as a time-series for ease of visualisation.

In  general,  analytical  characterisation  of  materials  is  a  key  step  in  deciphering  the

microscopic physiognomies and behaviour of materials, which may be utilised to enhance

the performance and dependability of materials in a variety of applications. Of course, no

single data point from one instrument tells the entire story; hence, the need to have a

comprehensive set from all measurement data types.

It is also worth mentioning here that to truly harness the power of the above described

datasets in performing predictions of new materials, another key piece of data point to

consider is first principle modelling of chemical reactions (Pantelides 2013, Noble 2013).

This is important as it helps to solidify the boundaries of algorithms in modelling various

parameters within a design space.

Another  importance  aspect  of  dealing  with  the  data  from analytical  instrumentation  is

ensuring data are stored in a common database, such as MySQL, PostgreSQL, MongoDB

and  others.  Having  data  stored  in  the  right  system  formats  helps  for  a  smooth data

extraction process. The process to extract the data from the instruments' data sources can

be programmatically encoded through scripts in languages, such as Python, R or MATLAB

(a common language amongst research engineers in the industry). For ease of use, a no-
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code/low-code  solution  is  highly  preferred  in  the  chemical/material  science  industry

segment  as  the  level  of  programming  language  knowledge  is  not  mature  within  the

research scientist skillset. If coding can be avoided in the initially phase, it will help with

gradually bringing key lab scientist up to speed with what an integrated dataset can bring

to their research. Numerous data integration tools exist today that can be run with no-code

experience needed to extract  and combine data from different instrument API sources.

Examples include Talend, Informatica or MuleSoft. Certainly, organisations can also build

their  unique pipeline of data integration platforms using the many configurable options,

such as KNIME and SciTergic Pipeline Pilot tools.

Electronic Lab Notebook (ELN) data source

Traditionally,  ELN systems are meant to replace paper notebooks with digital  analogue

documentation platforms. They are typically used in wide array of organisation sectors,

such as chemical industry, pharmaceutical and food/beverage industries (Machina 2013).

ELN improves efficiency by centrally keeping any information, data or intellectual property

generated by scientists in a searchable database. With time-stamps, version control and

record  authentication,  experimental  documentation  required  to  support  a  patent  is

safeguarded, maintained and shared in a high-security location. ELN is a document-based

repository for both long text-based descriptors, chemical structure information, multi-format

file types, such as XLS and image files. Hence, it allows users a very flexible data capture

approach  mimicking  document  entry  in  MS-Excel  and  MS-Word.  The  level  of  data

structuring  in  the  system  has  a  significant  impact  on  the  reporting  and  searching

capabilities of ELN, which seem to be uneven across industry platforms. On the one hand,

"free-text" ELN are adaptable and may record any type of result, similar to MS-Word or

TXT  document.  Although  the  findings  in  free-text  are  searchable  or  available  via  the

experiment identifier, the data are not organised. As a result, aggregating findings from

several studies to generate structure-property tables is difficult. Another drawback of ELN

systems  is  the  formulation  or  recipe  data,  recorded  by  scientists  in  their  notes  (and

synthesis scheme), is not inherently connected to any test data. Hence, interconnected

data values can be low and incomplete or unstructured enough to be reused by others or

ML  tools.  Specialised  ELN  systems  found  in  the  pharmaceutical  research  domains

(chemistry, pharmacology etc.) are more structured and it is possible to search by chemical

reaction or use established calculation templates, for example, to convert in vivo raw data

into findings (Machina 2013). Although doing that means generating more data silos which

defeats the purpose of an integrated flow of data from labs.

In practice, the primary application of ELN in R&D projects is to replace paper notes, ease

information flow and comply with intellectual  property restrictions. Having said that,  the

ancillary  data  created  through  ELN  serves  as  a  rich  metadata  source  to  augment

formulation,  synthesis and process data transformation to machine learning (ML)-ready

datasets.
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Laboratory Information Management System (LIMS) data source

LIMS is a sample workflow-driven tool which is used to monitor and record all the data

generated by a process.  It  is  widely  known for  its  sample test  data management  and

consolidation (Gibbon 1996, Paszko 2000). The application is built  on a SQL database

platform, making it fairly straightforward to query and access data. LIMS are required for

GLP compliance because they  enforce  standard  operating  procedures  (SOP)  and can

identify and document deviations from such SOP. Due to their connections to tools and

procedures,  LIMS can simplify  work,  ensuring that  SOP is followed and tracks data at

every stage, from beginning to completion. In addition, they produce reports for specific

tests, samples or research. As a result, they shorten the time it takes from request to result,

increasing data production throughput  and enhancing result  quality.  They do,  however,

generate data silos and do not allow for smooth data integration because they are related

to a single process. They are designed to follow a single process and are almost solely

employed  in  regulated  environments  where  processes  do  not  change  frequently  like

manufacturing environment,  as opposed to R&D, where conditions and procedures are

routinely updated (Prasad 2012). This creates some drawbacks for such systems used in

R&D groups within the chemical industry. As an example, LIMS may or may not pull data

from  lab  instruments  depending  on  the  system  set-up  within  a  company.  For  global

organisations  where  research  is  done  in  multiple  geographical  locations,  Information

Technology (IT)  teams will  set  up LIMS to run on remote desktop clients to make the

services  available  across  the  regions.  Doing  that  means  creating  virtual  networks  for

devices to connect to and exchange information. This can be a daunting task to bring all

instrument PCs into such a network; hence, IT teams will typically enable domain specific

internet protocol addresses to access the LIMS client servers. This limits the ability to pull

raw data from instruments for researchers, even though test data from these instruments

are often more structured and complete compared to those of ELN data.

A similar shortcoming of LIMS system by itself is that test data are not inherently tied to

formulations  or  business  data.  Hence,  test  data  of  samples  synthesised  by  specific

formulations documented in ELN are not integrated comprehensively for a true end-to-end

research workflow. This is an inefficient way of systems set-up as companies prepare to be

digitally transformed.

From  the  data  stream  formats  discussed  above,  the  next  logical  step  is  to  define  a

workflow-based  integration  approach  that  ingests  and  transforms  data  into  ML-ready

assets using a pipeline tool.

Data automation and custom workflows

Today,  a  significant  majority  of  cheminformatics  specialists  and  data  scientists  are

increasingly using web servers for data processing and automation. The use of these web-

based technologies lowers the barrier of computational requirements needed to process

large chunks of data. In fact, server-side scripting languages like Ruby, PHP and ASP can

be utilised to automate data processing, file manipulation and database communication
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even  via  APIs  (Kannan  2018,  Groth  2020).  These  web-server-based  operations  are

generally not free and cannot be hosted internally. However, there are other open source

programmes that make it possible to create workflows and greatly simplify the automation

of  data processing.  One  of  the  benefits  of  these  processes  is  their  versatility  and

customisability to match individual demands. KNIME is likely the most extensively used

open access environment (Warr 2012) and it is discussed more in this section. Of course

there are other pipeline-based workflow programmes available on the market.

KNIME workflow platform

Data integration is a critical step in the data mining process, in which data from multiple

sources is integrated into a single, unified data repository. There are many tools available

to facilitate data integration, including ETL (extract, transform and load) tools, database

integration tools and data warehouse tools. As discussed earlier,  the open source data

integration platform KNIME is one of the most popular tools for data integration.

KNIME (Konstanz Information Miner) is a free and open-source data analytics, reporting

and integration platform. It is used in a wide variety of data-driven applications, including

data mining, machine-learning, data visualisation and predictive analytics (Rückert 2009, 

Köster 2017, Ferreira 2018, Brunner 2018). It enables users to perform a wide range of

data science tasks, including data pre-processing, feature engineering, model building and

deployment, without requiring programming skills. KNIME supports various data sources,

including spreadsheets, databases and big data platforms and provides a vast library of

pre-built  nodes for various data manipulation and analysis tasks (Gollapudi  2020).  The

software also offers a flexible platform for creating custom workflows and integrating with

other  tools,  making it  a  popular  choice for  data scientists,  business analysts  and data

engineers. KNIME has achieved widespread success in a variety of analytics fields thanks

to  the  modular  workflow  architecture  it  employs,  as  well  as  its  inherent  capacity  to

automatically align numerous tasks, free distribution and straightforward analytical pipeline

communication (Warr 2012). Additionally, it is highly adaptable and enables the integration

of many applications and tools (Berthold et al. 2009). See Tiwari and Sekhar's review for a

thorough description of the "workflow" idea, as well as other software that uses this method

(Tiwari 2007Fig. 3

Figure 3.  

An example of KNIME workflow to extract, clean and validate data from different sources.
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From the above workflow, the key steps to consider are listed below.

1. Data Collection:  Use the "File Reader"  node to read data from multiple files or

instruments. This can include CSV, Excel or other file formats.

2. Data  Cleaning:  Use  the  "Data  Cleansing"  node  to  remove  duplicates,

inconsistencies and missing values from the data.

3. Data Transformation: Use the "Data Transformation" node to convert the data into a

common format that can be integrated with other data sources. This can include

converting column data types, aggregating data and more.

4. Data Mapping: Use the "Data Mapping" node to map the transformed data to a

common data model, ensuring compatibility.

5. Data Loading: Use the "Database Writer" node to load the mapped data into a data

repository, such as a database or data warehouse.

6. Data Quality  Check:  Use the "Data Validation" node to verify  the accuracy and

completeness of the integrated data. This can include checks for missing values,

data ranges and more.

7. Data Visualisation: Use the "Data Visualisation" node to visualise the integrated

data and explore patterns and trends. This can include creating charts, graphs and

other visualisations.

8. Data Export: Use the "File Writer" node to export the integrated data to a file format

for further analysis or sharing.

These are just examples of the various nodes that could be used in a KNIME workflow for

data integration. The actual workflow will depend on the specific requirements and data

sources. There are over 13,000 workflows already developed by KNIME contributors on

the community platform and this could serve as a point of reference for users. Further,

there are thousands of nodes with descriptors from which a user can build a workflow.

KNIME's  use  of  scalable  machine-learning  is  an  intriguing  feature.  Some  of  these

algorithms use naive Bayesian models or similarity searches to do virtual screening, with

most  options  being  predefined.  Nonetheless,  integrating  scripts  from  programming

languages with machine-learning libraries (such as R and Python) is one approach for

increasing flexibility in KNIME operations.

We have designed a KNIME workflow for data integration that could serve as an example

of multi-conversion nodes and data aggregator in Fig. 3.

What next after integrated data?

To develop procedures that examine various facets of chemical space, a wide variety of

chemoinformatic  resources are accessible.  These resources are being used in  custom

workflows or open web servers. These technologies serve not just cheminformaticians, but

also members of interdisciplinary teams inside businesses who are either non-experts or

do not have the time to create their  own code or procedures from scratch.  Below, we

provide  a  non-exhaustive  list  of  tools/vendors  on  the  market  today  that  can  help

organisations in the inception of their digital awareness and transformation journey (Fig. 4).
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We classify three (3) key domain users in any organisation, based on their digital expertise

level and experience. The core domain user-group will be the full-time data scientists or

cheminformaticians  hired  and  fully  dedicated  to  programming  and  data  governance

structuring. This group will have the capacity to utilise a deep programming language like R

and Python to extract, prepare, explore and build predictive models on datasets. The next

related group is the citizen-data scientist, who happens to be fairly knowledgeable in data

science tools as well as possessing domain knowledge of the business needs. This group

can utilise the low-code/no-code platforms to build insight and push data-driven decision-

making across the organisation. Merkelbach et al. provide a nicely documented approach

to  enabling  internal  organisational  domain  experts  to  become  citizen-data  scientists  (

Merkelbach et al. 2022). The final group is the business experts with roles solely based on

the deep expertise in the R&D and business-related needs of the company. This group can

also  utilise  the  no-code  platforms  to  harness  business  intelligence  from  integrated

datasets.

These tools are expected to evolve and improve in the future.  It  is  important  to avoid

having the user-friendly web server apps turn into unusable black boxes. To completely

optimise the interpretation of the findings, it is critical that the user fully understands the

computations that are performed. The user also has to be aware of the approximation and

potential constraints of the application or workflow. Moreover, organisations should not shy

away from approaching technical experts in the field of this and many other data tools

available to them in their unique situations. The majority of these vendors offer small sand-

box exercises to generate excitement and value for a use case that will be beneficial to

both parties. Therefore, if an organisation is not well-versed with citizen-data scientists or

data  scientists  in  the  field  of  AI  and  other  ML  programming  languages,  the  key

Figure 4.  

Competitive landscape of data tools.

 

16 Bentum S, Wild D

https://arpha.pensoft.net/zoomed_fig/9383032
https://arpha.pensoft.net/zoomed_fig/9383032
https://arpha.pensoft.net/zoomed_fig/9383032
https://doi.org/10.3897/rio.9.e105197.figure4
https://doi.org/10.3897/rio.9.e105197.figure4
https://doi.org/10.3897/rio.9.e105197.figure4


recommendation is to engage with select domain specific vendors in a sandbox proof-of-

concept to create a successful use-case story. However, of course, success is dependent

on the data availability; hence, the data integration step is always going to be the first step

for a truly digitalised organisation.

Conclusion

Positive change required in data management is frequently hampered by silos, whether

they be operational or informational. This is especially true for data from the material and

chemical science industry. Integrated data sources are critical in the research lab because

they provide researchers with a comprehensive and centralised view of their research. This

aids  in  decreasing  data  duplication  and  discrepancies,  facilitating  data  analysis  and

enabling effective data administration. Furthermore, by giving access to up-to-date and

correct  information,  connected  data  sources  promote  team communication  and enable

better  decision-making.  Thus,  the usage of  linked data sources can lead to  enhanced

research outputs, higher productivity and overall lab efficiency.

As organisations embark on a digital transformation journey, having an integrated data lake

from research labs is very critical to the success of application of ML algorithms for new

formulation  and  material  improvement  predictions.  In  order  to  train  and  validate  ML

models,  integrated  lab  data  sources  are  necessary.  To  make  reliable  predictions,  ML

models require a vast amount of high-quality,  diversified and consistent data. The data

utilised  for  training  and validation  may be  more  thorough,  accurate  and up-to-date  by

combining data sources,  according to  experts.  Furthermore,  an integrated data source

makes  it  simple  for  researchers  to  contribute  fresh  data  to  the  model,  allowing  it  to

continuously improve its predictions over time. Consequently, integrated data sources are

essential for the success of ML in the lab since they lay the groundwork for developing new

and better predictions.

Breaking down large, monolithic lab programmes that have grown into sources of technical

debt  and  transformational  roadblocks  is  a  key  step  in  digital  transformation.  An

organisation  may  begin  to  recognise  and  appreciate  the  advantages  of  digital

transformation by removing obstacles to information exchange amongst the various lab

types and facilitating better flow and access to data. All laboratories, despite the fact that

they may not be constructed equally, should be viewed as equally significant components

of a system that can offer long-term operational and business benefits through quicker,

more integrated data and processes.

Appendix

Summary of data integration steps for the lab environment:

1. Standardise data formats: Ensure that data from different instruments are saved in

a standard format, such as CSV, JSON or XML.
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2. Use a common database: Store data from all instruments in a common database,

such as MySQL, MongoDB or PostgreSQL.

3. Write  scripts:  Write  scripts  in  a  programming  language  such  as  Python,  R  or

MATLAB to extract, clean and combine data from different sources.

4. Use APIs: If the instruments have APIs, use them to retrieve data and integrate it

into your system.

5. Implement data integration software: Use software tools like Talend, Informatica or

MuleSoft to automate data integration from different instruments.

6. Regularly  update and maintain the integration:  Regularly  check and update the

data integration to ensure that the data are accurate and up-to-date.

Abbreviations

AI – Artificial Intelligence

API - Application Programming Interface

R&D – Research and Development

ML – Machine Learning

NIST – National Institute of Standards and Technology

CSV – Comma Separated Value

mzML – XML-based format for Mass Spectroscopy output files

XML – eXtensible Markup Language

JSON – JavaScript Object Notation

KNIME – Konstanz Information Miner

API – Application Programming Interface

MGI – Materials Genome Initiative

IP – Intellectual Property

SQL – Structured Query Language

LIMS – Laboratory Information Management System

ELN – Electronic Lab Notebook

PLC – Programmable Logic Controller

DCS – Distributed Control System
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SCADA – Supervisory Control And Data Acquisition

IOT – Internet of Things

TXT – Text

GC – Gas Chromatography

DSC – Differential Scanning Calorimetry

TEM – Transmission Electron Microscopy

IR – InfraRed Spectroscopy

GCMS – Gas Chromatography Mass Spectroscopy

JCAMP-DX – Joint Committee on Atomic and Molecular Physical Data

m/z – Mass to Charge ratio

RDP – Remote Desktop Protocol
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