
Research Ideas and Outcomes 9: e101006

doi: 10.3897/rio.9.e101006

Reviewed v 1

Software Description

pyRiemann-qiskit: A Sandbox for Quantum

Classification Experiments with Riemannian

Geometry

Anton Andreev , Grégoire H. Cattan , Sylvain Chevallier , Quentin Barthélemy

‡ GIPSA-lab, CNRS, University of Grenoble-Alpes, Grenoble, France

§ IBM Software, Krakow, Poland

| LISV, University of Paris-Saclay, Paris, France

¶ Foxteam, Vaulx-en-Velin, France

Corresponding author: Grégoire H. Cattan (gcattan@hotmail.fr)

Academic editor: Editorial Secretary

Received: 25 Jan 2023 | Accepted: 15 Mar 2023 | Published: 20 Mar 2023

Citation: Andreev A, Cattan GH, Chevallier S, Barthélemy Q (2023) pyRiemann-qiskit: A Sandbox for Quantum

Classification Experiments with Riemannian Geometry. Research Ideas and Outcomes 9: e101006.

https://doi.org/10.3897/rio.9.e101006

Abstract

Background

Quantum computing is a promising technology for machine learning, in terms of

computational costs and outcomes. In this work, we intend to provide a framework that

facilitates the use of quantum machine learning in the domain of brain-computer interfaces

– where biomedical signals, such as brain waves, are processed.

New information

To this end, we integrated Qiskit, a well-known quantum library, with pyRiemann, a

framework for the analysis of biomedical signals using Riemannian Geometry. In this

paper, we describe our approach, the main elements of our implementation and our

research directions. A key result is the creation of a standardised pipeline

(QuantumClassifierWithDefaultRiemannianPipeline) for the binary classification of brain

‡ § | ¶

© Andreev A et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY
4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are
credited.

https://doi.org/10.3897/rio.9.e101006
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.9.e101006&domain=pdf&date_stamp=2023-3-20
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.9.e101006&domain=pdf&date_stamp=2023-3-20
http://crossmark.crossref.org/dialog/?doi=10.3897/rio.9.e101006&domain=pdf&date_stamp=2023-3-20
mailto:gcattan@hotmail.fr
https://doi.org/10.3897/rio.9.e101006

waves. The git repository reported in this paper also contains a complete test suite and

examples to guide practitioners. We believe that this software will enable further research

on the joint field of brain-computer interfaces and quantum computing.

Keywords

information geometry, machine learning, time series, signal processing, Brain-Computer

Interface (BCI)

Introduction

Quantum computing has its roots in the so-called double-slit experiment conducted by

Thomas Young in 1802. In this experiment, a small entity, such as a photon or an electron,

is directed towards two parallel slits and the resulting interference pattern is observed. The

observation shows that the entity behaves as a wave, which suggests that it passes

through both slits simultaneously. From a computational perspective, this wave-particle

duality means that a single bit of information can be encoded as a quantum bit, which is a

superposition of two different states. This unique characteristic of quantum computing

offers a significant advantage over classical computing in terms of computational time and

outcomes, such as for pattern recognition or when using limited training sets (Rebentrost et

al. 2014, Blance and Spannowsky 2021).

A ubiquitous library for quantum computing is Qiskit (Abraham 2019). Qiskit is authored by

IBM and distributed under the Apache 2.0 licence which provides both quantum algorithms

and backends. A backend can be either a local machine or a remote machine, which can

be an emulated one or a real quantum computer. Qiskit abstraction over the type of the

selected machine makes designing and using quantum algorithms seamless.

Qiskit implements quantum versions of two support vector-like classifiers, named quantum-

enhanced support vector classifier (QSVC) and variational quantum classifier (VQC,

Havlíček et al. (2019)). In practice, experiments on artificial datasets suggest that quantum-

enhanced support vector machines (SVMs) offer a provable speed-up compared to

classical algorithms (Liu et al. 2021). These classifiers likely offer an advantage over

classical SVMs in situations where the classification task is complex. Task complexity

depends on the available data, the quality of the data and the encoding of the data into

quantum states.

pyRiemann-qiskit implements a wrapper around QSVC and VQC, enabling quantum

classification, based on Riemannian Geometry (RG).

Project description

Funding: This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors.

2 Andreev A et al

Web location (URIs)

Homepage: https://doi.org/10.5281/zenodo.7565763

Wiki: https://github.com/pyRiemann/pyRiemann-qiskit/wiki

Download page: https://pyriemann-qiskit.readthedocs.io/en/latest/installing.html

Bug database: https://github.com/pyRiemann/pyRiemann-qiskit/issues

Repository

Type: Git

Browse URI: https://github.com/pyRiemann/pyRiemann-qiskit/

Usage licence

Usage licence: Other

IP rights notes: BSD 3-Clause "New" or "Revised" License

Implementation

Implements specification

pyRiemann-qiskit facilitates the creation and parameterisation of a quantum backend and

is fully compliant with scikit-learn’s transformers, estimators and classifiers, so it becomes

easy to integrate quantum classification into existing pipelines. It also supports docplex for

the specification of convex optimisation problems, with the limitation of using binary and

unconstrained variables. pyRiemann-qiskit is built on top of pyRiemann (Barachant et al.

2020), a machine learning library based on RG, thereby enabling the manipulation of

covariance matrices (and, to a larger extent, semi-positive definite matrices) within the

Riemannian manifold and which allows the projection of these matrices into a tangent

space at a specific point on the Riemannian manifold. Classification is performed either in

the tangent space or by directly utilising the Riemannian distance between each sample

(represented by its covariance matrix) and a class prototype in the manifold.

pyRiemann-qiskit also includes examples to guide practitioners, as well as a complete test

suite. We will briefly describe below the functionalities provided by the software.

Support for quantum classifiers

The software supports QSVC and VQC classifiers. The first concern regarding quantum

classifiers is the encoding of classical data into quantum states. This operation is known as

feature mapping. To obtain an advantage over classical computing, feature mapping must

pyRiemann-qiskit: A Sandbox for Quantum Classification Experiments with ... 3

https://doi.org/10.5281/zenodo.7565763
https://github.com/pyRiemann/pyRiemann-qiskit/wiki
https://pyriemann-qiskit.readthedocs.io/en/latest/installing.html
https://github.com/pyRiemann/pyRiemann-qiskit/issues
https://github.com/pyRiemann/pyRiemann-qiskit/
https://www.eclipse.org/org/documents/edl-v10.php
http://ibmdecisionoptimization.github.io/docplex-doc/mp/index.html

implement quantum circuits which are difficult to emulate on a classical computer. Feature

mapping is common in VQCs and QSVCs. Both are SVM-like classifiers in the sense that

they generate a separating hyperplane. The difference between them is that VQCs uses a

variational quantum circuit (also known as a variational form) for this task, whereas QSVCs

uses a quantum-enhanced kernel with a conventional SVM. The software also supports the

Pegasos implementation of QSVC, which offers a speed-up compared to QSVC

(Gentinetta et al. 2022).

Table 1 demonstrates how to instantiate the VQC or QSVC classifier in pyRiemann-Qiskit.

from pyriemann_qiskit.classification import QuanticSVM, QuanticVQC

vqc = QuanticVQC()

qsvc = QuanticSVM()

pegasos = QuanticSVM(pegasos=True)

svc = QuanticSVM(quantum=False)

By default, the backend will be a local quantum simulator. However, it is possible to register

on IBM quantum and request a free token to use one of the publicly available quantum

computers. All classifiers accept a q_account_token parameter which, if valid, provides

access to one of several real quantum computers available with IBM.

However, note that, at the time of writing, the number of qubits (and, therefore, the feature

dimension) is limited to:

• 36 on a local quantum simulator;

• 5000 on a remote quantum simulator;

• 5–7 on a real free quantum computer;

• 127 on exploratory quantum computers (not available for public use).

Support for convex optimisation problems

The MDM algorithm (Barachant et al. 2012) consists in finding the minimum distance

between a trial and a class prototype before labelling the trial with the prototype which is

the closest to the trial. Alternatively, this task can be defined as a convex optimisation

problem and executed as a quantum circuit.

pyRiemann-qiskit supports the docplex library for the definition of convex optimisation

problems. Specifically, this is useful in these two cases:

• in training: computing the barycenter of the covariance matrices, i.e. a matrix is

used as a point in the manifold and thus an average – called a class prototype – of

all these points can be calculated;

• in classification: finding the minimum distance between a trial and a class prototype

can also be defined as a quadratic optimisation problem (Zhao et al. 2019) – see

section Direct classification of covariance matrices under Additional Information.

Table 1.

Instantiation of VQC and QSVC classifiers in pyRiemann-qiskit.

4 Andreev A et al

https://quantum-computing.ibm.com/
http://ibmdecisionoptimization.github.io/docplex-doc/mp/index.html

To calculate the class prototype, we need to select a distance and provide an optimiser.

We model the distance as a convex problem, based on frobenius distance (python method

fro_mean_convex). The model objective is to find the matrix which is at minimum distance

to all covariance matrices. This matrix is then designated as the barycenter or class

prototype of the covariance matrices. The optimiser is the component which is responsible

for finding the coefficients of this barycenter, based on the model objective and the

covariance matrices used as inputs. For the optimiser, pyRiemann-qiskit relies on Qiskit

implementation of QAOA (Quantum Approximate Optimisation Algorithm). However, QAOA

is limited to solving only QUBO (Quadratic Unconstrained Binary Optimisation) problems,

that is, problems with unconstrained and binary variables only. In other words, the mean

matrix, being the subject of optimisation, can only accept binary variables and, thus, the

input covariance matrices can only contain zeros and ones as coefficients. For this reason,

pyRiemann-qiskit uses a wrapper around Qiskit’s QAOA optimiser (class

NaiveQAOAOptimizer) that rounds covariance matrices to a certain precision and

transforms each resulting integer coefficient to binary coefficients. This transformation is

based on Qiskit’s IntegerToBinary, a bounded coefficient encoding method.

The complexity of the QAOA optimiser rises as a function of the size of the covariance

matrices and the upper-bound coefficient. The size of the covariance matrices depends on

the number of input channels in the input time epoch, as well as the dimension reduction

method that is used. The upper-bound coefficient also has an impact on the final size of

the covariance matrices. The upper-bound coefficient is simply the maximal value that can

possibly take a coefficient in a matrix. If all coefficients inside a matrix are integers ranging

from 0 to 3, then each of them can be represented by only 2 bits (00, 01, 10, 11). In this

case, each integer coefficient inside the matrix can be replaced by two binary coefficients

and, thus, the size of the resulting matrices will be "only" twice as large. As the mean

matrix to optimise has the exact same size as the input covariance matrices, it means that

there will be two times more variables to optimise inside the mean matrix. Therefore, this

implies a higher number of qubits to hold the variables inside the matrix. As QAOA is

computationally expensive, we also provide a wrapper over the classical optimiser Cobyla

that allows for easier testing.

Table 2 demonstrates how to use the fro_mean_convex method.

from pyriemann.utils.distance import distance_methods

from pyriemann.classification import MDM

from pyriemann.estimation import XdawnCovariances

from sklearn.pipeline import make_pipeline

from sklearn.model_selection import StratifiedKFold, cross_val_score

from pyriemann_qiskit.utils.mean import fro_mean_convex

metric = {'mean': "convex",'distance': "convex"}

distance_methods["convex"] = lambda A, B: np.linalg.norm(A - B, ord='fro')

clf = make_pipeline(XdawnCovariances(), MDM(metric=metric))

Table 2.

Convex distance optimisation with frobenius mean in pyRiemann-qiskit.

pyRiemann-qiskit: A Sandbox for Quantum Classification Experiments with ... 5

skf = StratifiedKFold(n_splits=5)

n_matrices, n_channels, n_classes = 100, 3, 2

covset = get_covmats(n_matrices, n_channels)

labels = get_labels(n_matrices, n_classes)

score = cross_val_score(clf, covset, labels, cv=skf, scoring='roc_auc')

If the MDM classifier is supplied with the "convex" metric, it will automatically use the

fro_mean_convex method for computing the mean – the class prototype. The default

optimiser for the fro_mean_convex method is the Cobyla optimiser.

Classification of vectorised covariances matrices

The number of qubits is limited (especially on real hardware) and this puts a limit on the

length of the feature vectors that can be used with quantum programming. In

pyRiemannQiskit, we use the method of tangent space vectorisation. It consists of creating

covariance matrices from the signal then projecting them into the tangent space of the

Riemannian manifold. The result is a feature vector with reduced dimensionality. The

dimensionality can be further reduced using PCA, for example, in order to match the

number of available qubits.

The code snippet below (Table 3) demonstrates how to perform a dimension reduction of

the signal epoch using Xdawn (Rivet and Souloumiac 2013), apply the tangent space

method, then further reduce the size of the feature space to match the capability of the

quantum backend in charge of running our quantum classifier (here QuanticSVM).

from pyriemann.estimation import XdawnCovariances

from pyriemann.classification import TangentSpace

from sklearn.decomposition import PCA

from pyriemann_qiskit.classification import QuanticSVM

pipe = make_pipeline(XdawnCovariances(nfilter=2), TangentSpace(), PCA(), QuanticSVM())

For convenience, the library provides the QuantumClassifierWithDefault

RiemannianPipeline class, which implements the above pipeline.

Audience

pyRiemann-qiskit is a sandbox for experimenting with quantum computing in conjunction

with RG. It unifies within the same library a quantum computational library and RG tools to

ultimately allow for the creation of better Brain-Computer Interfaces (BCI). RG tools are

proved to perform very well on the classification of EEG ERP signals (Lotte et al. 2018).

Therefore, the primary audience we target is practitioners coming from the BCI field, willing

to experiment with quantum computing for the classification of electroencephalography

(EEG) or magnetoencephalography signals. An initial study on this topic is available in

Cattan and Andreev (2022). It can be downloaded from pyRiemann-qiskit. However, note

Table 3.

Example of quantum classification pipeline with pyRiemann-qiskit.

6 Andreev A et al

https://github.com/pyRiemann/pyRiemann-qiskit/blob/main/doc/Presentations/QuantumERPClassification.pdf

that the tools provided by the library are also relevant to other domains, such as

classification of other biometric signals, image recognition or detection of fraud

transactions (e.g. Grossi et al. (2022)).

In summary, we seek to encourage the use of quantum computing together with RG for

concrete (BCI) applications, opening new and interesting research paths. For example, it

would be interesting to investigate BCI illiteracy, a situation in which classical classifiers

usually fail to generalise well using EEG data.

Additional information

Future work directions on the software include the direct classification of covariance

matrices and multi-class classification.

Direct classification of covariance matrices

The MDM algorithm consists of finding the minimum distance between a trial and a class

prototype before labelling the trial with the class that is the closest to the trial. It is a

decision optimisation problem that can be solved using Qiskit’s QAOA, under the

conditions that: 1) it is provided in the form of a convex model and, 2) it is quadratic,

unconstrained and contains only binary variables.

For instance, MDM, based on the Log-Euclidian metric, has the following expression (Zhao

et al. 2019):

with and . D is the training data, w

are the weights that are being optimised, Y is the new trial to classify and X is a class

prototype. Class prototypes are built during training using the mean covariance matrices

and, therefore, this approach is compatible with the fro_mean_convex method previously

introduced.

Note that the equation above is a quadratic optimisation problem. However, weights in the

w vector are constrained continuous variables, thus complicating the use of the

IntegerToBinary approach.

Besides, the equation must be solved for each new trial that needs to be classified. The

complexity of determining the correct weights to minimise the equation varies as a function

of the number of classes and the upper bound coefficient which is used for the

IntegerToBinary method (the higher the coefficient, the higher the complexity). While

potentially slower, this quantum-optimised version of the MDM algorithm could produce

better results, especially in cases where classical computation fails.

i

pyRiemann-qiskit: A Sandbox for Quantum Classification Experiments with ... 7

Multi-class classification

At the time of writing, pyRiemann-qiskit only supports binary classification of covariance

matrices (i.e. presence or absence of an ERP). Further work envisions the implementation

of multi-class classifiers.

References

• Abraham H, et al. (2019) Qiskit: An Open-source Framework for Quantum Computing.

Zenodo. 10.5281/zenodo.2562110. https://doi.org/10.5281/zenodo.2562110

• Barachant A, Bonnet S, Congedo M, Jutten C (2012) Multiclass brain-computer

interface classification by Riemannian geometry. IEEE transactions on bio-medical

engineering 59 (4): 920‑928. https://doi.org/10.1109/TBME.2011.2172210

• Barachant A, Barthélemy Q, Gramfort A, King J-, Chevallier S, P. L. Rodrigues, Berg

GWv (2020) pyRiemann. Zenodo. URL: https://doi.org/10.5281/zenodo.593816

• Blance A, Spannowsky M (2021) Quantum machine learning for particle physics using a

variational quantum classifier. Journal of High Energy Physics 2021 (2). https://doi.org/

10.1007/JHEP02(2021)212

• Cattan G, Andreev A (2022) First steps to the classification of ERPs using quantum

computation. NTB Berlin 2022 - International Forum on Neural Engineering & Brain

Technologies. URL: https://hal.archives-ouvertes.fr/hal-03672246

• Gentinetta G, Thomsen A, Sutter D, Woerner S (2022) The complexity of quantum

support vector machines. arXiv. Comment: 24 pages, 13 figures. URL: http://arxiv.org/

abs/2203.00031

• Grossi M, Ibrahim N, Radescu V, Loredo R, Voigt K, Von Altrock C, Rudnik A (2022)

Mixed Quantum-Classical Method For Fraud Detection with Quantum Feature

Selection. arXiv. Comment: 11 pages, 12 figures, 9 tables. https://doi.org/10.48550/

arXiv.2208.07963

• Havlíček V, Córcoles A, Temme K, Harrow A, Kandala A, Chow J, Gambetta J (2019)

Supervised learning with quantum-enhanced feature spaces. Nature 567 (7747):

209‑212. https://doi.org/10.1038/s41586-019-0980-2

• Liu Y, Arunachalam S, Temme K (2021) A rigorous and robust quantum speed-up in

supervised machine learning. Nature Physics 17 (9): 1013‑1017. https://doi.org/

10.1038/s41567-021-01287-z

• Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018)

A Review of Classification Algorithms for EEG-Based Brain-Computer Interfaces: A 10

Year Update. Journal of Neural Engineering 15 (3). https://doi.org/10.1088/1741-2552/

aab2f2.

• Rebentrost P, Mohseni M, Lloyd S (2014) Quantum Support Vector Machine for Big

Data Classification. American Physical Society URL: https://dspace.mit.edu/handle/

1721.1/90391

• Rivet B, Souloumiac A (2013) Optimal linear spatial filters for event-related potentials

based on a spatio-temporal model: Asymptotical performance analysis. Signal

Processing 93 (2): 387‑398. https://doi.org/10.1016/j.sigpro.2012.07.019

• Zhao K, Wiliem A, Chen S, Lovell B (2019) Convex Class Model on Symmetric Positive

Definite Manifolds. arXiv:1806.05343 [cs] https://doi.org/10.48550/arXiv.1806.05343

8 Andreev A et al

https://doi.org/10.5281/zenodo.2562110
https://doi.org/10.1109/TBME.2011.2172210
https://doi.org/10.5281/zenodo.593816
https://doi.org/10.1007/JHEP02(2021)212
https://doi.org/10.1007/JHEP02(2021)212
https://hal.archives-ouvertes.fr/hal-03672246
http://arxiv.org/abs/2203.00031
http://arxiv.org/abs/2203.00031
https://doi.org/10.48550/arXiv.2208.07963
https://doi.org/10.48550/arXiv.2208.07963
https://doi.org/10.1038/s41586-019-0980-2
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1088/1741-2552/aab2f2.
https://doi.org/10.1088/1741-2552/aab2f2.
https://dspace.mit.edu/handle/1721.1/90391
https://dspace.mit.edu/handle/1721.1/90391
https://doi.org/10.1016/j.sigpro.2012.07.019
https://doi.org/10.48550/arXiv.1806.05343

	Abstract
	Background
	New information

	Keywords
	Introduction
	Project description
	Web location (URIs)
	Repository
	Usage licence
	Implementation
	Implements specification
	Audience

	Additional information
	References

