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Abstract

Background

Quantum  computing  is  a  promising  technology  for  machine  learning,  in  terms  of

computational costs and outcomes. In this work, we intend to provide a framework that

facilitates the use of quantum machine learning in the domain of brain-computer interfaces

– where biomedical signals, such as brain waves, are processed.

New information

To  this  end,  we  integrated  Qiskit,  a  well-known  quantum  library,  with  pyRiemann,  a

framework  for  the  analysis  of  biomedical  signals  using  Riemannian  Geometry.  In  this

paper,  we  describe  our  approach,  the  main  elements  of  our  implementation  and  our

research  directions.  A  key  result  is  the  creation  of  a  standardised  pipeline

(QuantumClassifierWithDefaultRiemannianPipeline) for  the  binary  classification  of  brain
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waves. The git repository reported in this paper also contains a complete test suite and

examples to guide practitioners. We believe that this software will enable further research

on the joint field of brain-computer interfaces and quantum computing.
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Interface (BCI)

Introduction

Quantum computing has its  roots in  the so-called double-slit  experiment  conducted by

Thomas Young in 1802. In this experiment, a small entity, such as a photon or an electron,

is directed towards two parallel slits and the resulting interference pattern is observed. The

observation  shows  that  the  entity  behaves  as  a  wave,  which  suggests  that  it  passes

through both slits  simultaneously.  From a computational  perspective,  this  wave-particle

duality means that a single bit of information can be encoded as a quantum bit, which is a

superposition  of  two  different  states.  This  unique  characteristic  of  quantum computing

offers a significant advantage over classical computing in terms of computational time and

outcomes, such as for pattern recognition or when using limited training sets (Rebentrost et

al. 2014, Blance and Spannowsky 2021).

A ubiquitous library for quantum computing is Qiskit (Abraham 2019). Qiskit is authored by

IBM and distributed under the Apache 2.0 licence which provides both quantum algorithms

and backends. A backend can be either a local machine or a remote machine, which can

be an emulated one or a real quantum computer. Qiskit abstraction over the type of the

selected machine makes designing and using quantum algorithms seamless.

Qiskit implements quantum versions of two support vector-like classifiers, named quantum-

enhanced  support  vector  classifier  (QSVC)  and  variational  quantum  classifier  (VQC,

Havlíček et al. (2019)). In practice, experiments on artificial datasets suggest that quantum-

enhanced  support  vector  machines  (SVMs)  offer  a  provable  speed-up  compared  to

classical  algorithms  (Liu  et  al.  2021).  These  classifiers  likely  offer  an  advantage  over

classical  SVMs in situations  where  the  classification  task  is  complex.  Task  complexity

depends on the available data, the quality of the data and the encoding of the data into

quantum states.

pyRiemann-qiskit implements  a  wrapper  around  QSVC  and  VQC,  enabling  quantum

classification, based on Riemannian Geometry (RG).

Project description
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Web location (URIs)

Homepage:  https://doi.org/10.5281/zenodo.7565763 

Wiki:  https://github.com/pyRiemann/pyRiemann-qiskit/wiki 

Download page:  https://pyriemann-qiskit.readthedocs.io/en/latest/installing.html 

Bug database:  https://github.com/pyRiemann/pyRiemann-qiskit/issues 

Repository

Type:  Git

Browse URI:  https://github.com/pyRiemann/pyRiemann-qiskit/ 

Usage licence

Usage licence: Other

IP rights notes:  BSD 3-Clause "New" or "Revised" License 

Implementation

Implements specification

pyRiemann-qiskit facilitates the creation and parameterisation of a quantum backend and

is fully compliant with scikit-learn’s transformers, estimators and classifiers, so it becomes

easy to integrate quantum classification into existing pipelines. It also supports docplex for

the specification of convex optimisation problems, with the limitation of using binary and

unconstrained variables. pyRiemann-qiskit is built on top of pyRiemann (Barachant et al.

2020),  a  machine  learning  library  based on  RG,  thereby  enabling  the  manipulation  of

covariance matrices (and, to a larger extent, semi-positive definite matrices) within the

Riemannian manifold and which allows the projection of  these matrices into a tangent

space at a specific point on the Riemannian manifold. Classification is performed either in

the tangent space or by directly utilising the Riemannian distance between each sample

(represented by its covariance matrix) and a class prototype in the manifold.

pyRiemann-qiskit also includes examples to guide practitioners, as well as a complete test

suite. We will briefly describe below the functionalities provided by the software.

Support for quantum classifiers 

The software supports QSVC and VQC classifiers. The first concern regarding quantum

classifiers is the encoding of classical data into quantum states. This operation is known as

feature mapping. To obtain an advantage over classical computing, feature mapping must
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implement quantum circuits which are difficult to emulate on a classical computer. Feature

mapping is common in VQCs and QSVCs. Both are SVM-like classifiers in the sense that

they generate a separating hyperplane. The difference between them is that VQCs uses a

variational quantum circuit (also known as a variational form) for this task, whereas QSVCs

uses a quantum-enhanced kernel with a conventional SVM. The software also supports the

Pegasos  implementation  of  QSVC,  which  offers  a  speed-up  compared  to QSVC

(Gentinetta et al. 2022).

Table 1 demonstrates how to instantiate the VQC or QSVC classifier in pyRiemann-Qiskit.

from pyriemann_qiskit.classification import QuanticSVM, QuanticVQC 

vqc = QuanticVQC() 

qsvc = QuanticSVM() 

pegasos = QuanticSVM(pegasos=True) 

svc = QuanticSVM(quantum=False) 

By default, the backend will be a local quantum simulator. However, it is possible to register

on IBM quantum and request a free token to use one of the publicly available quantum

computers.  All  classifiers accept a q_account_token parameter which,  if  valid,  provides

access to one of several real quantum computers available with IBM.

However, note that, at the time of writing, the number of qubits (and, therefore, the feature

dimension) is limited to:

• 36 on a local quantum simulator;

• 5000 on a remote quantum simulator;

• 5–7 on a real free quantum computer;

• 127 on exploratory quantum computers (not available for public use).

Support for convex optimisation problems 

The  MDM algorithm (Barachant  et  al. 2012)  consists  in  finding  the  minimum distance

between a trial and a class prototype before labelling the trial with the prototype which is

the closest to the trial.  Alternatively,  this task can be defined as a convex optimisation

problem and executed as a quantum circuit.

pyRiemann-qiskit  supports  the  docplex  library for  the  definition  of  convex  optimisation

problems. Specifically, this is useful in these two cases:

• in training: computing the barycenter of the covariance matrices, i.e. a matrix is

used as a point in the manifold and thus an average – called a class prototype – of

all these points can be calculated;

• in classification: finding the minimum distance between a trial and a class prototype

can also be defined as a quadratic optimisation problem (Zhao et al. 2019) – see

section Direct classification of covariance matrices under Additional Information.

Table 1. 

Instantiation of VQC and QSVC classifiers in pyRiemann-qiskit.

4 Andreev A et al

https://quantum-computing.ibm.com/
http://ibmdecisionoptimization.github.io/docplex-doc/mp/index.html


To calculate the class prototype, we need to select a distance and provide an optimiser.

We model the distance as a convex problem, based on frobenius distance (python method

fro_mean_convex). The model objective is to find the matrix which is at minimum distance

to  all  covariance  matrices.  This  matrix  is  then  designated  as  the  barycenter  or  class

prototype of the covariance matrices. The optimiser is the component which is responsible

for  finding  the  coefficients  of  this  barycenter,  based  on  the  model  objective  and  the

covariance matrices used as inputs. For the optimiser, pyRiemann-qiskit relies on Qiskit

implementation of QAOA (Quantum Approximate Optimisation Algorithm). However, QAOA

is limited to solving only QUBO (Quadratic Unconstrained Binary Optimisation) problems,

that is, problems with unconstrained and binary variables only. In other words, the mean

matrix, being the subject of optimisation, can only accept binary variables and, thus, the

input covariance matrices can only contain zeros and ones as coefficients. For this reason,

pyRiemann-qiskit  uses  a  wrapper  around  Qiskit’s  QAOA  optimiser  (class

NaiveQAOAOptimizer)  that  rounds  covariance  matrices  to  a  certain  precision  and

transforms each resulting integer coefficient to binary coefficients. This transformation is

based on Qiskit’s IntegerToBinary, a bounded coefficient encoding method.

The complexity of the QAOA optimiser rises as a function of the size of the covariance

matrices and the upper-bound coefficient. The size of the covariance matrices depends on

the number of input channels in the input time epoch, as well as the dimension reduction

method that is used. The upper-bound coefficient also has an impact on the final size of

the covariance matrices. The upper-bound coefficient is simply the maximal value that can

possibly take a coefficient in a matrix. If all coefficients inside a matrix are integers ranging

from 0 to 3, then each of them can be represented by only 2 bits (00, 01, 10, 11). In this

case, each integer coefficient inside the matrix can be replaced by two binary coefficients

and, thus, the size of the resulting matrices will  be "only" twice as large. As the mean

matrix to optimise has the exact same size as the input covariance matrices, it means that

there will be two times more variables to optimise inside the mean matrix. Therefore, this

implies a higher number of  qubits to hold the variables inside the matrix.  As QAOA is

computationally expensive, we also provide a wrapper over the classical optimiser Cobyla

that allows for easier testing.

Table 2 demonstrates how to use the fro_mean_convex method.

from pyriemann.utils.distance import distance_methods 

from pyriemann.classification import MDM 

from pyriemann.estimation import XdawnCovariances 

from sklearn.pipeline import make_pipeline 

from sklearn.model_selection import StratifiedKFold, cross_val_score 

from pyriemann_qiskit.utils.mean import fro_mean_convex 

metric = {'mean': "convex",'distance': "convex"}

distance_methods["convex"] = lambda A, B: np.linalg.norm(A - B, ord='fro') 

clf = make_pipeline(XdawnCovariances(), MDM(metric=metric)) 

Table 2. 

Convex distance optimisation with frobenius mean in pyRiemann-qiskit.
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skf = StratifiedKFold(n_splits=5) 

n_matrices, n_channels, n_classes = 100, 3, 2 

covset = get_covmats(n_matrices, n_channels) 

labels = get_labels(n_matrices, n_classes) 

score = cross_val_score(clf, covset, labels, cv=skf, scoring='roc_auc') 

If  the MDM classifier  is  supplied with the "convex"  metric,  it  will  automatically  use the

fro_mean_convex  method  for  computing  the  mean  –  the  class  prototype.  The  default

optimiser for the fro_mean_convex method is the Cobyla optimiser.

Classification of vectorised covariances matrices 

The number of qubits is limited (especially on real hardware) and this puts a limit on the

length  of  the  feature  vectors  that  can  be  used  with  quantum  programming.  In

pyRiemannQiskit, we use the method of tangent space vectorisation. It consists of creating

covariance matrices from the signal then projecting them into the tangent space of the

Riemannian  manifold.  The  result  is  a  feature  vector  with  reduced  dimensionality.  The

dimensionality  can  be  further  reduced using  PCA,  for  example,  in  order  to  match  the

number of available qubits.

The code snippet below (Table 3) demonstrates how to perform a dimension reduction of

the signal  epoch using Xdawn (Rivet  and Souloumiac 2013),  apply  the tangent  space

method, then further reduce the size of the feature space to match the capability of the

quantum backend in charge of running our quantum classifier (here QuanticSVM).

from pyriemann.estimation import XdawnCovariances 

from pyriemann.classification import TangentSpace 

from sklearn.decomposition import PCA 

from pyriemann_qiskit.classification import QuanticSVM 

pipe = make_pipeline(XdawnCovariances(nfilter=2), TangentSpace(), PCA(), QuanticSVM()) 

For  convenience,  the  library  provides  the  QuantumClassifierWithDefault

RiemannianPipeline class, which implements the above pipeline.

Audience

pyRiemann-qiskit is a sandbox for experimenting with quantum computing in conjunction

with RG. It unifies within the same library a quantum computational library and RG tools to

ultimately allow for the creation of better Brain-Computer Interfaces (BCI). RG tools are

proved to perform very well on the classification of EEG ERP signals (Lotte et al. 2018).

Therefore, the primary audience we target is practitioners coming from the BCI field, willing

to  experiment  with  quantum computing for  the classification of  electroencephalography

(EEG) or magnetoencephalography signals.  An initial  study on this topic is available in

Cattan and Andreev (2022). It can be downloaded from pyRiemann-qiskit. However, note

Table 3. 

Example of quantum classification pipeline with pyRiemann-qiskit.
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that  the  tools  provided  by  the  library  are  also  relevant  to  other  domains,  such  as

classification  of  other  biometric  signals,  image  recognition  or  detection  of  fraud

transactions (e.g. Grossi et al. (2022)).

In summary, we seek to encourage the use of quantum computing together with RG for

concrete (BCI) applications, opening new and interesting research paths. For example, it

would be interesting to investigate BCI illiteracy, a situation in which classical classifiers

usually fail to generalise well using EEG data.

Additional information

Future  work  directions  on  the  software  include  the  direct  classification  of  covariance

matrices and multi-class classification.

Direct classification of covariance matrices 

The MDM algorithm consists of finding the minimum distance between a trial and a class

prototype before labelling the trial  with the class that  is  the closest  to the trial.  It  is  a

decision  optimisation  problem  that  can  be  solved  using  Qiskit’s  QAOA,  under  the

conditions that:  1) it  is provided in the form of a convex model and, 2) it  is quadratic,

unconstrained and contains only binary variables.

For instance, MDM, based on the Log-Euclidian metric, has the following expression (Zhao

et al. 2019):

 

with  and . D is the training data, w

are the weights that are being optimised, Y is the new trial to classify and X  is a class

prototype. Class prototypes are built during training using the mean covariance matrices

and, therefore, this approach is compatible with the fro_mean_convex method previously

introduced.

Note that the equation above is a quadratic optimisation problem. However, weights in the

w vector  are  constrained  continuous  variables,  thus  complicating  the  use  of  the

IntegerToBinary approach.

Besides, the equation must be solved for each new trial that needs to be classified. The

complexity of determining the correct weights to minimise the equation varies as a function

of  the  number  of  classes  and  the  upper  bound  coefficient  which  is  used  for  the

IntegerToBinary  method  (the  higher  the  coefficient,  the  higher  the  complexity).  While

potentially slower, this quantum-optimised version of the MDM algorithm could produce

better results, especially in cases where classical computation fails.

i
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Multi-class classification 

At the time of writing, pyRiemann-qiskit only supports binary classification of covariance

matrices (i.e. presence or absence of an ERP). Further work envisions the implementation

of multi-class classifiers.
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